• Title/Summary/Keyword: 관심영역 추출

검색결과 411건 처리시간 0.031초

블럽 컬러링을 이용한 CT영상에서 간 영역 자동 추출 (Automatic Segmentation of the Liver Region in CT Images Using Slob Coloring)

  • 임옥현;김진철;박성미;이배호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.760-762
    • /
    • 2004
  • 본 논문에서 CT영상에서 간 영역을 자동적으로 분할할 수 있는 방법을 제안한다. 밝기의 특성을 이용하여 초기 관심 영역을 추출하기 위해 ATI(Automatic Threshold Intensity)기법을 사용하였다. 간 영역을 최종적으로 추출하기 위해 블럽 컬러링 기법을 사용하였다 기존 블럽 컬러링의 연산속도를 개선하기 위해서 Recoloring table을 이용하였다 제안된 방법을 이용하여 실험한 결과로 간 영역 추출의 성공률 90%를 얻었다.

  • PDF

음성인식 시스템의 입 모양 인식개선을 위한 관심영역 추출 방법 (RoI Detection Method for Improving Lipreading Reading in Speech Recognition Systems)

  • 한재혁;김미혜
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.299-302
    • /
    • 2023
  • 입 모양 인식은 음성인식의 중요한 부분 중 하나로 이를 개선하기위한 다양한 연구가 진행되어 왔다. 기존의 연구에서는 주로 입술주변 영역을 관찰하고 인식하는데 초점을 두었으나, 본 논문은 음성인식 시스템에서 기존의 입술영역과 함께 입술, 턱, 뺨 등 다른 관심 영역을 고려하여 음성인식 시스템의 입모양 인식 성능을 비교하였다. 입 모양 인식의 관심 영역을 자동으로 검출하기 위해 객체 탐지 인공신경망을 사용하며, 이를 통해 다양한 관심영역을 실험하였다. 실험 결과 입술영역만 포함하는 ROI 에 대한 결과가 기존의 93.92%의 평균 인식률보다 높은 97.36%로 가장 높은 성능을 나타내었다.

영상 이미지의 특정 영역 검출을 위한 정렬 보정 알고리즘 연구 (A Study on Alignment Correction Algorithm for Detecting Specific Areas of Video Images)

  • 진고환
    • 한국융합학회논문지
    • /
    • 제9권11호
    • /
    • pp.9-14
    • /
    • 2018
  • 비전 시스템은 영상 이미지를 획득하여 대상 영역을 판별하고 분석하는 시스템이며, 자동화 공정에 사용하고자 하는 수요가 증가하면서 비전 기반의 검사 시스템 도입이 매우 중요한 이슈로 부상하고 있다. 이러한 비전 시스템은 일상생활과 생산 공정에서 검사 장비로 사용되고 있으며, 영상 처리 기술에 대한 연구가 매우 활발하게 이루어지고 있다. 그러나 문자 인식이나 반도체 패키지 등의 검사 대상을 추출하기 위한 영역 정의에 대한 연구는 미미한 상황이다. 본 논문에서는 사용자가 관심영역을 정의하여 엣지 추출을 수행함에 있어 잡음까지도 엣지로 판단하는 경우를 방지하기 위하여, 영상 이미지 내에서 잡음이 존재하여도 특정한 영역의 엣지들의 분포를 이용하여 검사 대상 영역의 엣지를 추출할 수 있는 잡음에 강인한 정렬 보정 모델을 제안한다. 제안 모델을 통하여 타이어의 문자 인식이나 반도체 패키지 검사와 같은 생산 분야에 적용하면 제품의 생산 효율이 향상될 수 있을 것으로 기대된다.

MBR의 비례 관계를 이용한 영상 보간이 적용된 뇌 MR 영상의 3차원 가시화 (3D Visualization of Brain MR Images by Applying Image Interpolation Using Proportional Relationship of MBRs)

  • 송미영;조형제
    • 정보처리학회논문지B
    • /
    • 제10B권3호
    • /
    • pp.339-346
    • /
    • 2003
  • 본 연구에서는 뇌 MR 영상의 3차원 가시화를 위해 여러 단면의 원영상을 사용하지 않고, 적은 수의 횡단면 영상만을 이용하여 보간 영상을 생성하는 방법에 대해 제안한다. 이 과정에서의 핵심인 영상 보간을 위해 우선 3차원으로 재구성하고자 하는 관심영역을 분할하고, 분할된 관심 영역들의 경계와 MBR(Minimum Bounding Rectangle) 정보를 추출한다. 그리고 보간하고자 하는 층의 영상 크기는 분할된 관심영역의 상ㆍ하층 각각 두 영상들의 MBR 크기 변화율로 결정하고, 이를 기반으로 분할된 관심 영역의 영상내에서 해당 화소를 찾고, 입방 보간법을 통해 검출된 각 화소의 명암 가중치를 부여하여 보간 영상의 화소 명암치를 산출한다. 최종적으로는 원영상에서 분할한 관심영역 및 생성된 관심영역의 보간 영상들에서 특징점 정보와 3차원 복셀을 추출하여 3차원으로 재구성한다.

포그라인드 이미지 추출을 통한 게임 플레이어 관심 영역 (Interest area of game player through extraction of foreground Image)

  • 이면재
    • 한국융합학회논문지
    • /
    • 제8권11호
    • /
    • pp.271-277
    • /
    • 2017
  • 영상 처리에서 포그라운드 이미지 추출은 움직이는 대상이나 객체를 인식하려는 경우에 주로 응용된다. 게임에서 포그라운드 이미지에 포함되는 객체들은 주로 캐릭터와 NPC(Non Player Character), 아이템 등이 될 수 있다. 이 객체들은 플레이어들의 이동, 공격, 방어, 수집의 대상이 되는 객체들로 플레이어들의 주요 관심 대상이 될 수 있다. 본 연구는 이러한 배경에서, 플레이어들의 관심 영역을 추출하기 위한 연구이다. 이를 위해, 첫째, 포그라운드 이미지를 추출한다. 둘째, 추출한 포그라운드 이미지를 일정시간 누적시켜서 결과 이미지로 보여준다. 플레이 시간에 따른 누적된 포그라운드 이미지는 객체들의 화면 출현 위치와 빈도를 알 수 있게 도움을 준다. 이 연구는 플레이어들이 관심 영역 설정과 효율적인 UX/UI를 설계하는데 도움을 줄 수 있다.

히스토그램을 이용한 문자 영역 추출 (character segmentation using histogram)

  • 김지은;정우영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2012년도 제24회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.173-174
    • /
    • 2012
  • 문자 영역의 추출은 명함 등 문서의 정형화된 문자 인식, 비전 기반 감시 시스템에서의 간판, 부호 등의 자연영상에서의 문자 인식 등 다양한 분야에 활용될 수 있다. 우리가 관심을 갖는 문자는 간판이나 이름표 등 다른 이에게 정보를 전달해주는 기능을 하는 것으로 그 전배경의 구분이 명확하다. 이러한 특징은 히스토그램의 변화와 관련이 되어 있으며 본 논문에서는 그 변화를 분석함으로써 문자 영역 추출 방법을 제안한다.

  • PDF

맘모그램 영상에서의 군집화된 미세석회질 컴퓨터 보조 검출 시스템 구현 (Implementation of Clustered Microcalcification Computer Aided Detection System in Mammograms)

  • 이정철;엄경식;이형지;박상근
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (A)
    • /
    • pp.1-5
    • /
    • 2006
  • 본 논문에서는 유방암의 조기발견에 있어서 중요한 소견중 하나인 군집화된 미세석회질을 유방촬영 영상으로부터 자동으로 분석 및 검출하는 컴퓨터 보조 검출 시스템을 구현하였다. 전처리단계로서 유방영상에 메디안 필터를 사용하여 잡음을 제거하고, 히스토그램과 레이블링 연산을 수행하여 실제 유방영역만을 추출 하는 작업을 구현하였다. 그런 후에 추출된 실제 유방영역에서 LoG (Laplacian of Gaussian)연산을 수행하고 히스토그램을 분석하여 이진화를 수행한후에 후보점을 검출하였다. 마지막으로 이를 이용하여 영역확장 알고리즘을 수행하여 미세석회질의 후보영역을 검출한 후, 미세석회질간의 거리를 분석하여 최종 관심영역을 추출하였다. 데이터베이스는 총 20개의 MIAS Mini Database의 맘모그램 영상을 사용하였으며 실험결과 89%라는 검출 성능을 얻을 수 있었다.

  • PDF

대용량 영상에서 관심영역 고속 추출 알고리즘 (A Study on High-Speed Extraction Algorithm of Interest Region in the Large Size Image)

  • 박문성;박상은;김인수;김혜규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (상)
    • /
    • pp.611-614
    • /
    • 2003
  • 본 논문에서는 컨베이어 벨트상에서 이송되는 대용량 소포영상의 획득과정을 통해 ROI(Region of Interest) 고속추출하기 위한 개념모델을 제시하고, 바코드와 같은 정규패턴을 고속으로 추출하여 단계적으로 검증한 것이다. 불필요한 영역을 검사하기 위한 조건과 유사한 패턴을 단계적으로 제거하는 방법을 적용한 것이다. $4,096{\times}4,096$이상의 대용량 영상에서 여러 종류의 2차원 바코드 ROI를 추출에 대해 약 200msec 이내에 완료되고, 거의 100%에 가까운 신뢰도로 바코드 영역을 추출할 수 있도록 한 것이다.

  • PDF

전경 이미지 분리와 마우스 트랙킹 프로그램을 이용한 사용자 관심 영역 유도 (Extraction of user interest area using foreground image separation and mouse tracking program)

  • 이면재
    • 한국게임학회 논문지
    • /
    • 제17권5호
    • /
    • pp.113-122
    • /
    • 2017
  • 영상 처리에서 전경 이미지 추출은 움직이는 대상이나 객체를 인식하려는 경우에 주로 응용된다. 게임에서 전경 이미지에 포함되는 객체들은 주로 캐릭터와 NPC(Non Player Character), 아이템 등이 될 수 있다. 이 객체들은 플레이어들의 이동, 공격, 방어, 수집의 대상이 되는 객체들로 플레이어들의 주요 관심 대상이 될 수 있다. 본 연구는 이러한 배경에서, 플레이어들의 관심 영역을 추출하기 위한 연구이다. 이를 위해, 첫째, 전경 이미지를 추출한다. 둘째, 추출한 전경 이미지를 일정시간 누적시켜서 히트맵(Heat Map) 이미지를 결과 이미지로 보여준다. 마지막으로 마우스 트랙킹 프로그램을 이용하여 마우스 이동 영역을 검출하고 히트맵 이미지와 비교함으로써 플레이어의 관심 영역을 유도할 수 있다.

플래카드 자동 인식을 위한 관심 영역 추출 (ROI Extraction for Automatic Placard Recognition)

  • 허경용
    • 한국정보통신학회논문지
    • /
    • 제23권4호
    • /
    • pp.374-380
    • /
    • 2019
  • 컨테이너 표면에는 화물의 위험성을 표시하기 위해 다양한 플래카드를 부착한다. 위험물이 적재된 컨테이너의 경우 일반 컨테이너와 별도로 관리되는 등 그 처리에 주의가 필요하므로 항만 자동화 시스템의 일부로 플래카드 자동 인식에 대한 수요가 생겨나고 있다. 이 논문에서는 플래카드 자동 인식의 전단계로 컨테이너 영상에서 플래카드 영역을 추출하는 방법을 제안한다. 플래카드는 종류가 다양하지만 모두 다이아몬드 형태를 가지고 있다는 점은 인식에서 장점이 될 수 있지만, 컨테이너 표면이 평면이 아니어서 플래카드 영상이 다양하게 변형될 수 있다는 점은 인식에서 단점이라고 할 수 있다. 제안하는 방법을 실제 영상에 적용하였을 때 유형 2 오류(false negative error)는 발생하지 않았다. 또한, 관심 영역 추출을 위해 추출하고자 하는 대상의 형태적인 특징과 기본적인 이미지 연산만을 사용하였으므로 다양한 형태 기반의 관심 영역 추출에 적용될 수 있다.