• Title/Summary/Keyword: 관변형

Search Result 9, Processing Time 0.022 seconds

An Investigation of Structural Behavior of Underground Buried GFRP Pipe in Cooling Water Intake for the Nuclear Power Plant (원전 냉각수 취수용 지중매설 GFRP관의 구조적 거동 조사)

  • Lee, Hyoung-Kyu;Park, Joon-Seok
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.91-96
    • /
    • 2015
  • GRP pipe (Glass-fiber Reinforced Plastic Pipe) lines making use of FRP (Fiber Reinforced Plastic) are generally thinner, lighter, and stronger than the existing concrete or steel pipe lines, and it is excellent in stiffness/strength per unit weight. In this study, we present the result of field test for buried GRP pipes with large diameter(2,400mm). The vertical and horizontal ring deflections are measured for 387 days. The short-term deflection measured by the field test is compared with the result predicted by the Iowa formula. In addition, the long-term ring deflection is predicted by using the procedure suggested in ASTM D 5365(ANNEX) in the range of 40 to 60 years of service life of the pipe based on the experimental results. From the study, it was found that the long-term vertical and horizontal ring deflection up to 60 years is less than the 5% ring deflection limitation.

A Safety Evaluation on the Ring Deflection of Buried GRP Pipes (지중매설 유리섬유복합관의 관변형에 관한 안전성 평가)

  • Park, Joon-Seok;Kim, Sun-Hee;Kim, Eung-Ho;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.26-33
    • /
    • 2011
  • Recently, the use of buried glass fiber reinforced plastic (GRP) pipes is widespread and ever increasing trend in the industry. GRP pipes are attractive for use in harsh environments, such as for the collection and transmission of liquids which are abrasive and/or corrosive. The structural behavior of a GRP pipes buried under the ground is different from that of a rigid one made of concrete or clay, for example. A GRP pipe buried under the ground is deflected circumferentially by several percent and the stresses in the pipe are mainly compressive stresses. A GRP pipes has been introduced by a number of manufacturers for selection and used by underground pipeline designers. In all cases, the modified Spangler's equation is recommended by these manufacturers for predicting the ring deflection of these pipes under dead and live loads. In this paper, the ring deflection of buried GRP pipe is evaluated and discussed based on the result of analytical investigation.

Prediction of Ring Deflection GRP Pipe Buried Underground (지중매설 GRP 관의 관변형 예측)

  • Kim, Sun-Hee;Lee, Young-Geun;Joo, Hyung-Jung;Jung, Nam-Jin;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.38-44
    • /
    • 2013
  • Glass fiber reinforced plastic (GRP) pipes buried underground are attractive for use in harsh environments, such as for the collection and transmission of liquids which are abrasive and/or corrosive. In this paper, we present the result of investigation pertaining to the structural behavior of GRP flexible pipes buried underground. In the investigation of structural behavior such as a ring deflection, experimental and analytical studies are conducted. In addition, vertical ring deflection is measured by the field test and finite element analysis (FEA) is also conducted to simulate behavior of GRP pipe buried underground. Based on the results from the finite element analyses considering soil-pipe interaction the vertical ring deflection behavior of buried GRP pipe is predicted. In addition, analytical and experimental results are compared and discussed.

A Study on the Behavior of Buried Flexible Pipes with Soil Condition (지반조건에 따른 지중매설 연성관의 거동에 관한 연구)

  • Lee, Hyoung-Kyu;Park, Joon-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • In general, pipes buried underground can be classified into either rigid or flexible pipe. Glass fiber reinforced thermosetting polymer plastic (GFRP) pipe can be considered as one of typical flexible pipes for which the soil-pipe structure interaction must be taked into account in the design. In this paper, we present the result of an investigation pertaining to the short-term and long-term behavior of buried GFRP pipe. The mechanical properties of the GFRP pipe produced in the domestic manufacturer are determined and the results are reported in this paper. In addition, Ring deflection is measured by the field tests and the finite element analysis. Also, the extrapolation using these techniques typically extends the trend from data gathered over a period of approximately 5,232 hours, to a prediction of the property at 50 years, which is the typical maximum extrapolation time. Therefore, it was investigated that the long-term ring deflection of GFRP pipe estimated by methods for Monod-type.

Prediction of Short-term Behavior of Buried Polyethylene Pipe (지중매설 폴리에틸렌 관의 단기거동 예측)

  • Park, Joonseok;Lee, Young-Geun;Kim, Sunhee;Park, Jung-Hwan;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.907-914
    • /
    • 2012
  • Flexible pipes take advantage of their ability to move, or deflect, under loads without structural damage. Common types of flexible pipes are manufactured from polyethylene (PE), polyvinyl chloride (PVC), steel, glass fiber reinforced thermosetting polymer plastic (GFRP), and aluminum. In this paper, we present the result of an investigation pertaining to the short-term behavior of buried polyethylene pipe. The mechanical properties of the polyethylene pipe produced in the domestic manufacturer are determined and the results are reported in this paper. In addition, vertical ring deflection is measured by the laboratory model test and the finite element analysis (FEA) is also conducted to simulate the short-term behavior of polyethylene pipe buried underground. Based on results from soil-pipe interaction finite element analyses of polyethylene pipe is used to predict the vertical ring deflection and maximum bending strain of polyethylene pipe.

Long-term Ring Deflection Prediction of GFRP Pipe in Cooling Water Intake for the Nuclear Power Plant (원전 냉각수 취수용 GFRP관의 장기관변형 예측)

  • Kim, Sun-Hee;Park, Joon-Seok;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.1-8
    • /
    • 2012
  • Recently, underground pipes are utilized in various fields of applications such as sewer lines, drain lines, water mains, gas lines, telephone and electrical conduits, culverts, oil lines, etc. Most of pipes are installed for long-term purposes and they should be safely installed in consideration of installation conditions because there are unexpected various terrestrial loading conditions. In this paper, we present the result of investigation pertaining to the structural behavior of glass fiber reinforced thermosetting polymer plastic (GFRP) flexible pipes buried underground. The mechanical properties of the GFRP flexible pipes produced in the domestic manufacturer are determined and the results are reported in this paper. In addition, ring deflection is measured by the field tests and the finite element analysis (FEA) is also conducted to simulate the structural behavior of GFRP pipes buried underground. From the field test results, we predicted long-term, up to 50 years, ring deflection of GFRP pipes buried underground based on the method suggested by the existing literature. It was found that the GFRP flexible pipe to be used for cooling water intake system in the nuclear power plant is appropriate because 5% ring deflection limitation for 50 years could be satisfied.

Pipe Stiffness Prediction of GRP Flexible Pipe (GRP 연성관의 관강성 예측)

  • Lee, Young-Geun;Kim, Sun-Hee;Park, Joon-Seok;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.18-24
    • /
    • 2011
  • In this paper, we present the load-deflection behavior of GRP pipes. GRP buried pipes are widely used in construction in the advantage of their superior mechanical and physical characteristics such as high chemical resistance, high corrosion resistance, right weight, smooth surface of the pipe, and cost effectiveness from soil-structure interaction. To design flexible pipes to be buried underground, it should be based on the ASTM D2412(2010). When applying ASTM D 2412(2010) to the design, pipe stiffness(PS) must be predetermined by the parallel-plate test which requires tedious and laborious working process. To overcome such problems, the finite element simulations for finding the load-deflection behavior of the GRP flexible pipes is installed at UTM testing machine. In the finite element simulations, basic data, such as the modulus of elasticity of the material and cross-sectional dimension, is used. From the investigation, we found that the difference between experimental result and analytical prediction is less than 15% when the pipe deflected 3% and 5% of its vertical diameter although the pipe material is not uniform across the cross-section.

Investigation and Maintenance of Sewage Pipeline to Prevent Water Seepage (내수침수 방지를 위한 하수관로 조사 및 유지관리)

  • Kim, Jae Gu;Jo, Deok Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.109-109
    • /
    • 2023
  • 지구 온난화 등 기상이변으로 추정되는 단시간 동안 특정지역에 집중되는 국지성 집중호우가 빈번해지고 있으며, 내수침수가 홍수재해의 주된 원인이 되고 있다. 내수침수의 원인으로는 하수관로의 통수능력 부족(39%), 저지대 침수(37%), 내수배제불량(16%) 및 기타(8%)로 조사된 바 있으며, 이중 하수관로의 경우 용량 및 통수능 부족, 구배불량, 토사퇴적에 의한 배수 불량 등으로 이에 대처하기 위해서는 기초자료의 조사가 우선 되어야 한다. 하수관로의 문제로 인한 내수침수의 원인으로 첫째 하수관로 내·외부 불량으로 인한 통수능 저하로 측구 및 빗물받이에 토사 등 장애물, 관로내부 장애물, 관로내부 불량(뿌리침임, 영구장애물, 관붕괴, 관파손, 관변형, 내피생성, 토사퇴적 등)이 있으며, 두 번째로 하수관로 구배불량과 마지막으로 외수위(또는 해수위) 상승으로 인한 내수침수로 구분될 수 있다. 이러한 하수관로의 문제점은 많은 부분이 불탐지역으로 조사가 매우 어려워서 대안 없이 방치되는 실정이다. 금회 연구에서는 이러한 불탐지역의 조사를 위한 장비의 개발 및 정밀조사를 통해서 하수관로를 진단하고 내수침수 예방을 위한 대책을 찾고자 하였다. 특히, 계단부 관로조사용 내시경 VR장비, 준만관 조사용 부유식 VR장비, 가스 및 안전위험 지역 조사용 지하 드론 장비를 개발하여 시험검증을 하고자 하였다. 또한, 스마트 하수관로 체계에 빅데이터를 기반으로 한 하수관로 토탈 솔류션(nPASS) 시스템으로 내수침수대응 및 하수관로 유지관리를 위한 시스템의 필요성을 규명하고자 하였다. 하수관로의 선진화를 통한 내수침수예방의 시작은 불탐지역 하수관로 조사를 통한 정확한 원인 파악이며, 조사 및 축적되는 빅데이타를 기반으로 하수관로 토탈 유지관리 시스템의 구축을 제안하고자 하였다.

  • PDF

A Study on the Ring Deflection According to Compaction of Buried Polyethylene Pipes (지중매설 폴리에틸렌관의 다짐도에 따른 관변형 연구)

  • Seungcheol Baek;Seungwook Kim;Byounghan Choi;Sunhee Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.10
    • /
    • pp.5-10
    • /
    • 2024
  • Flexible pipes have the property of resisting external loads by utilizing the rigidity of the pipe and the surrounding ground, and have recently been in the spotlight because they are lighter in weight and have excellent durability compared to concrete pipes. In this study, the behavior characteristics of buried polyethylene pipe, a representative flexible pipe, were examined. Double-walled and multi-walled polyethylene pipes were used, and the structural behavior of the polyethylene pipe was evaluated based on a 5% deflection of the pipe diameter suggested in the design standards for flexible pipes. For the polyethylene pipe, the material properties of the pipe were identified through a ring stiffness test, and the behavior characteristics in the ground were reviewed through the simulation experiment of the buried polyethylene pipes. In addition, a finite element analysis model was developed based on the results of underground burial simulation experiments, and the behavior characteristics of polyethylene pipes according to backfill conditions were evaluated using the developed finite element analysis model and design equation. As a result of the study, it was confirmed that the capacity of the pipes and the compaction of the backfill are the main factors that determine the structural performance of the buried polyethylene pipe.