• Title/Summary/Keyword: 과학 본성의 이해

Search Result 111, Processing Time 0.021 seconds

Exploring Educational Models for Integrating Socioscientific Issues (SSI) with Risk Education (과학기술관련 사회쟁점 (SSI)과 위험교육의 통합적 접근의 필요성 및 교육 모형 탐색)

  • Hyunju Lee;Young-Shin Park;Hyunok Lee;Kongju Mun;Yohan Hwang
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.4
    • /
    • pp.313-323
    • /
    • 2024
  • This study aims to explore educational methods to help students and citizens, who are exposed to numerous manufactured risks, better understand the nature of science and technology. It also seeks to develop their ability to identify, analyze, and evaluate the risks associated with science and technology, ultimately enabling them to live safer lives in society. To achieve this, through an extensive literature review, we explored the definition of risk, the necessity of risk education, and the relationship between SSI (Socioscientific Issues) education and risk education. Based on the results, we proposed the SSI-CURE (Socioscientific Issues Centered on the Understanding of Risk and its Evaluation) model, which can systematically educate about risks in the context of SSI. The SSI-CURE model proceeds through the following four steps: 1) Confrontation of SSI, 2) Understanding the Nature of Science and Technology with SSI, 3) Risk Assessment in SSI, and 4) Enactment of Countermeasures for SSI. These steps represent the key elements for education on risks in the context of SSI: Conceptual understanding of risks (risk knowledge), competencies necessary for discussing or addressing risk situations (risk competency), scientific content knowledge needed to understand risks (knowledge in science), and knowledge required to understand the causes of risks and their impacts (knowledge about science). We expect that the SSI-CURE model can be used not only as a guide for instruction but also as a representative framework for developing programs to educate about risks in the SSI context.

Analysis of Trends of Model and Modeling-Related Research in Science Education in Korea (과학교육에서 모델과 모델링 관련 국내 과학 교육 연구 동향 분석)

  • Cho, Hye Sook;Nam, Jeonghee
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.4
    • /
    • pp.539-552
    • /
    • 2017
  • The purpose of this study is to investigate the trends of model and modeling-related research in science education from 1989 to 2016 in Korea. Eighty-five (85) models and modeling-related journal articles were extracted from the KCI-listed journals and analyzed according to the criteria such as participants, research fields, research design, methods, data collection and elements of metamodeling knowledge. According to research participants, three out of four (3/4) were studied for students and the rest were for teachers. More than half of the studies for students were conducted with middle and high school students. The research fields of models and modeling-related researches in science education were comprised of earth science, chemistry, biology science, physics and science course. With regards to research design, the highest type is qualitative research and followed by hybrid research and quantitative research. According to research methods, the most numerous researches that were analyzed was the effectiveness of program, which was a developed model and modeling-related research. The analysis from the elements of the metamodeling knowledge showed most of model and modeling-related research utilized for the change of scientific concept or understanding.

Using a Learning Progression to Characterize Korean Secondary Students' Knowledge and Submicroscopic Representations of the Particle Nature of Matter (Learning Progression을 적용한 중·고등학생의 '물질의 입자성'에 관한 지식과 미시적 표상에 대한 특성 분석)

  • Shin, Namsoo;Koh, Eun Jung;Choi, Chui Im;Jeong, Dae Hong
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.5
    • /
    • pp.437-447
    • /
    • 2014
  • Learning progressions (LP), which describe how students may develop more sophisticated understanding over a defined period of time, can inform the design of instructional materials and assessment by providing a coherent, systematic measure of what can be regarded as "level appropriate." We developed LPs for the nature of matter for grades K-16. In order to empirically test Korean students, we revised one of the constructs and associated assessment items based on Korean National Science Standards. The assessment was administered to 124 Korean secondary students to measure their knowledge and submicroscopic representations, and to assign them to a level of learning progression for the particle nature of matter. We characterized the level of students' understanding and models of the particle nature of matter, and described how students interpret various representations of atoms and molecules to explain scientific phenomena. The results revealed that students have difficulties in understanding the relationship between the macroscopic and molecular levels of phenomena, even in high school science. Their difficulties may be attributed to a limited understanding of scientific modeling, a lack of understanding of the models used to represent the particle nature of matter, or limited understanding of the structure of matter. This work will inform assessment and curriculum materials development related to the fundamental relationship between macroscopic, observed phenomena and the behavior of atoms and molecules, and can be used to create individualized learning environments. In addition, the results contribute to scientific research literature on learning progressions on the nature of matter.

지구온난화에 따른 인천 지역 기상환경과 해양환경 변화의 관계 분석 : 귀추적 탐구 방법을 중심으로

  • Lee, Hyo-Nyeong;O, Hui-Jin;Lee, In-Ho;Kim, Min-Gi;Lee, Gyeong-Seop;Lee, Jun-Ho;Kim, Yeong-Geun;Jo, Su-Ho
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.70-70
    • /
    • 2010
  • 이 연구의 목적은 귀추적 탐구 방법과 관련된 전략들을 적용하여 지구온난화에 관련되어 측정된 다양한 유형의 데이터를 관련된 사실, 원리, 법칙, 선행 연구 결과 등을 토대로 지구통합적인 관점과 지구계를 구성하는 요소들 간의 상호작용과 영향을 중심으로 재해석하고 이해하는 것이다. 지구과학(지구시스템과학)의 학문 성격, 최근 동향, 본성 및 탐구 대상의 특성에 대한 내용과 지구과학의 본질적 속성에 잘 부합하는 귀추적 탐구 방법에 대해 학습한 후, 학생들은 인천 및 다양한 지역의 기상과 해양 자료 분석을 통하여 관찰되는 현상(결과)의 원인과 영향을 파악하는 연구 활동을 하였다. 이 과정에서 귀추적 탐구를 충분히 이해할 수 있도록, 과학 탐구에서 귀추적 탐구 방법을 사용하는 과학자들의 예시와 모의 활동을 통하여, 귀추적 탐구 방법에 사용되는 다양한 사고 전략(예, 데이터의 재구성 전략, 유추 전략, 개념적 결합 전략 등)에 대한 예시를 경험하였다. 학생들은 지구온난화에 관련되어 나타나는 현상(조사된 사항 포함)과 영향에 대해 지구시스템적으로 이해하고 재해석하기 위해 지구시스템을 구성하는 요소(예, 수권, 대기권)와 관련된 데이터 정보를 검색하고 수집하였다. 1) 지구시스템과 지구온난화에 대한 조사하고, 2) 지구온난화 및 기후변화의 변동성 확인한 후, 3) 지구온난화와 관련된 선행 연구 결과 분석하였다. 또한, 지구과학의 본질적 속성에 잘 부합하는 귀추적 탐구 방법의 이해와 적용하는 과정에서 1) 지구 온난화 및 기후 변화의 실태 파악하고, 2) 인천 지역의 월별, 계절별 기온 변화 분석 및 경향 조사(탐색: 연구문제 규명)한 후, 3) 인천과 속초 지역의 기온, 수온의 변화 추이 및 분석 (조사: 원인 조사 과정)하였다. 4) 속초 지역의 평균해면기압변화 추이 및 분석한 후, 그 결과를 토대로 5) 문헌조사 및 선행연구 결과 분석을 통한 지구 온난화의 영향을 미치는 요인 재검토 및 확인(선택 및 설명)하여, 6) 인천지역과 속초지역의 지구온난화 원인 분석 및 문제점 보완(설명)하기 위해 7) 겨울철 지구온난화가 더 심각한지 부산지역과 포항지역의 자료 분석을 통하여 연구 결과 내용의 보완 (추가 조사 및 설명)한 후, 8) 분석 결과 및 해석 내용을 전문가와 상담 실시하였다. 이 연구는 연구를 진행하면서 얻은 결과를 교육적 측면에서 다시 정리해 보면 다음과 같다. 우선, 학생들의 지구환경적 문제 해결 과정에서 귀추적 탐구 방법을 활용한 문제 해결 능력을 향상시켰다. 아울러, 지구과학의 탐구 본성, 최근 동향, 탐구대상의 특성 등의 학습을 통해 지구과학도로서의 기본적인 소양과 자질 향상에 기여하였으며, 사회과학의 연구방법을 순수과학연구에 접목하여 과학자로서의 문제해결 능력과 시스템 사고력을 향상시켰다.

  • PDF

The effect of pre-service science teachers' experiences in nuclear physics research on their understanding of scientific inquiry process and career planning (핵물리 연구 참여 경험이 예비 과학교사의 과학 탐구과정의 본성에 대한 인식과 진로탐색에 미치는 영향)

  • Lee, In-Sun;Choi, Kyung-Hee;Hahn, In-Sik;Kim, Seon-Hwa;Lee, Hyun-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.5
    • /
    • pp.541-551
    • /
    • 2009
  • This study aimed to investigate the effect of pre-service science teachers' experiences in nuclear physics research on their understanding of scientific inquiry process and career planning. The thirty-week URP (Undergraduate Research Participation) program was designed with the participation of six pre-service science teachers. Data sources included in-depth interviews with the individual teachers, group discussions, participant observations with field notes over the weeks, journals and lab logs, etc. Results indicated that the teachers perceived the complex and repetitive nature of the science research process, the importance of scientists' creativity and collaboration, etc. Their typical impressions of scientists has also more or less changed. In addition, the teachers had opportunities to confirm their aptitude in physics and to explore their career options in physics-related fields.

Trend Analysis of Informal Science Education Research in Korea: Focus on Educational Perspectives (국내 비형식 과학 교육 연구 경향 분석: 교육적 관점을 중심으로)

  • Jang, Eunjin
    • Journal of Science Education
    • /
    • v.42 no.3
    • /
    • pp.293-307
    • /
    • 2018
  • The purpose of this study is to search for the direction of informal science education research by analyzing them from the educational perspectives of informal science education. For this purpose, this study analyzed 144 journals related to informal science education that have been issued in the last six years in terms of educational perspectives. As a result, this study found a tendency for studies to be biased towards a few educational perspectives such as scientific practice participation, emotional enhancement, and understanding of knowledge, while studies on the understanding of nature of science have been conducted in a few cases. This tendency was also found in the analysis of the detailed media in each field, however, the biased educational perspectives varied from media to media. Therefore, in order to understand various aspects of informal science education itself, which is not a subsidy of formal school education, and to deeply understand what each media is trying to pursue, it should be done with various educational perspectives in each media study.

Suggesting the Conceptual Framework of the Nature of Technology(NOT) and Examining the Conceptions of Experts of Science, Technology, and Engineering Fields regarding the NOT (기술의 본성(NOT) 개념 틀 제안 및 과학기술공학 관련 전문가들의 인식 분석)

  • Lee, Young Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.1
    • /
    • pp.27-42
    • /
    • 2018
  • This study aims to suggest the conceptual framework for the Nature of Technology (NOT) by examining the current researches regarding the NOT in science and technology education and to analyze the conceptions of experts in science, technology, and engineering fields based on the framework of NOT. The NOT conceptual framework developed in the study consisted of the six domains of NOT, which are 1. Technology as artifacts, 2. Technology as knowledge, 3. Technology as practice, 4. Technology as system, 5. The role of technology in society, and 6. History of technology. Also, the results of analyzing the conceptions for the 30 experts in science, technology, and engineering fields emphasize on the three domains of the 3. Technology as practice, 4. Technology as system, and 5. The role of technology in society among the 6 domains of the framework of the six domains of the NOT framework. This findings are different from the results of previous researches conducted in science and technology education for exploring the conceptions of NOT in the POV of the public and students. As such, the results show that while the public and students possess naive ideas on NOT only focusing on the technology as products and tools, experts in science, technology, and engineering fields possess the authentic views of the NOT reflecting the complex and abstract concepts of technology in terms of the perspectives of philosophy of technology.

Analysis of Epistemic Considerations and Scientific Argumentation Level in Argumentation to Conceptualize the Concept of Natural Selection of Science-Gifted Elementary Students (초등 과학 영재 학생들의 자연선택 개념 이해를 위한 논변 활동에서 나타난 인식적 이해와 논변활동 수준 분석)

  • Park, Chuljin;Cha, Heeyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.4
    • /
    • pp.565-575
    • /
    • 2017
  • This study analyzes the epistemic considerations and the argumentation level revealed in the discourse of the key concept of natural selection for science-gifted elementary students. The paper analyzes and discusses the results of a three-student focus group, drawn from a cohort of twenty gifted sixth-grade elementary students. Nature, generality, justification, and audience were used to analyze epistemic consideration. Learning progression in scientific argumentation including argument construction and critique was used to analyze students' scientific argumentation level. The findings are as follows: First, Epistemic considerations in discourse varied between key concepts of natural selection discussed. The nature aspect of epistemic considerations is highly expressed in the discourse for all natural selection key concepts. But the level of generality, justification and audience was high or low, and the level was not revealed in the discourse. In the heredity of variation, which is highly expressed in terms of generality of knowledge, the linkage with various phenomena against the acquired character generated a variety of ideas. These ideas were used to facilitate engagement in argumentation, so that all three students showed the level of argumentation of suggestions of counter-critique. Second, students tried to explain the process of speciation by using concepts that were high in practical epistemic considerations level when explaining the concept of speciation, which is the final natural selection key concept. Conversely, the concept of low level of epistemic considerations was not included as an explanation factor. The results of this study suggest that students need to analyze specific factors to understand why epistemological decisions are made by students and how epistemological resources are used according to context through various epistemological resources. Analysis of various factors influencing epistemological decisions can be a mediator of the instructor who can improve the quality and level of the argumentation.

The Status of Scientiae Mediae in the History of Mathematics: Biancani's Case

  • Park, Woo-Suk
    • Korean Journal of Logic
    • /
    • v.12 no.2
    • /
    • pp.141-170
    • /
    • 2009
  • We can witness the recent surge of interest in the controversy over the scientific status of mathematics among Jesuit Aristotelians around 1600. Following the lead of Wallace, Dear, and Mancosu, I propose to look into this controversy in more detail. For this purpose, I shall focus on Biancani's discussion of scientiae mediae in his dissertation on the nature of mathematics. From Dear's and Wallace's discussions, we can gather a relatively nice overview of the debate between those who championed the scientific status of mathematics and those who denied it. But it is one thing to fathom the general motivation of the disputation, quite another to appreciate the subtleties of dialectical strategies and tactics involved in it. It is exactly at this stage when we have to face some difficulties in understanding the point of Biancani's views on scientiae mediae. Though silent on the problem of scientiae mediae, Mancosu's discussions of the Jesuit Aristotelians' views on potissima demonstrations, mathematical explanations, and the problem of cause are of utmost importance in this regard, both historically and philosophically. I will carefully examine and criticize some of Mancosu's interpretations of Piccolomini's and Biancani's views in order to approach more closely what was really at stake in the controversy.

  • PDF

Development of a History of Science Lesson Using the Content of 'Age Dating of the Earth' (지구의 연령 측정 관련 과학사 수업 개발)

  • Shin, Dong-Hee;Kang, Hye-Jin
    • Journal of the Korean earth science society
    • /
    • v.32 no.3
    • /
    • pp.324-333
    • /
    • 2011
  • The opinion, that the history of science should be introduced to science lesson, has been continuously emphasized by a group of people who supported the needs of science and scientific process, nature of science, and the interaction between science and society. When the importance of the integrated science education is emphasized, the history of science is suggested as an effective curriculum for it. To respond to this identified interest, we developed a lesson of the history of science by selecting the contents of the history of science as subject topics of the integrated science and by utilizing the findings of previous studies related to the history of science in science educations. To develop the history of science class as a subject of integrated science, we chose 'the age of the earth' as a unit. After the pilot test of the unit in secondary school students, the possibility of offering the lesson as a regular course was examined with analysis of the students' reactions showing its effectiveness.