DOI QR코드

DOI QR Code

Exploring Educational Models for Integrating Socioscientific Issues (SSI) with Risk Education

과학기술관련 사회쟁점 (SSI)과 위험교육의 통합적 접근의 필요성 및 교육 모형 탐색

  • Received : 2024.06.09
  • Accepted : 2024.07.27
  • Published : 2024.08.30

Abstract

This study aims to explore educational methods to help students and citizens, who are exposed to numerous manufactured risks, better understand the nature of science and technology. It also seeks to develop their ability to identify, analyze, and evaluate the risks associated with science and technology, ultimately enabling them to live safer lives in society. To achieve this, through an extensive literature review, we explored the definition of risk, the necessity of risk education, and the relationship between SSI (Socioscientific Issues) education and risk education. Based on the results, we proposed the SSI-CURE (Socioscientific Issues Centered on the Understanding of Risk and its Evaluation) model, which can systematically educate about risks in the context of SSI. The SSI-CURE model proceeds through the following four steps: 1) Confrontation of SSI, 2) Understanding the Nature of Science and Technology with SSI, 3) Risk Assessment in SSI, and 4) Enactment of Countermeasures for SSI. These steps represent the key elements for education on risks in the context of SSI: Conceptual understanding of risks (risk knowledge), competencies necessary for discussing or addressing risk situations (risk competency), scientific content knowledge needed to understand risks (knowledge in science), and knowledge required to understand the causes of risks and their impacts (knowledge about science). We expect that the SSI-CURE model can be used not only as a guide for instruction but also as a representative framework for developing programs to educate about risks in the SSI context.

본 연구는 현대 과학기술 사회의 수많은 위험에 노출된 학생과 시민들이 과학기술의 본성을 제대로 이해하고, 과학기술로부터 야기되는 위험을 식별, 분석, 평가하는 역량을 함양함으로써 안전한 삶을 영위할 수 있도록 돕는 교육 방안을 모색하는 데 목적이 있다. 이에, 문헌분석을 통해 위험의 의미와 위험교육의 필요성, SSI 교육과 위험 교육의 관계 등을 탐색한 후, SSI 맥락에서 위험을 체계적으로 교육할 수 있는 SSI-CURE 모형을 개발하였다. SSI-CURE 모형은 위험 자체에 대한 개념적 이해(위험지식), 위험상황에 대해 논의하거나 대처하는 데 필요한 역량(위험역량), 위험을 이해하기 위해 필요한 과학 내용지식(과학지식), 위험이 발생하는 원인과 위험이 미치는 영향을 이해하기 위해 필요한 지식(과학에 대한 지식)의 네 가지 내용요소에 기반하여, 쟁점발견, 쟁점 속 위험이해, 쟁점 속 위험분석, 쟁점대응 및 실천의 단계로 진행된다. 본 연구에서 제안된 SSI-CURE 모형은 수업의 안내자로서 역할을 할 뿐만 아니라, SSI 맥락에서 위험을 교육하기 위한 프로그램을 개발하는 데에도 대표적인 틀이 될 것으로 생각된다.

Keywords

Acknowledgement

이 논문은 2023년 대한민국 교육부와 한국연구재단의 공동연구지원사업의 지원을 받아 수행된 연구임(NRF-2023S1A5A2A03083957)

References

  1. Aven, T. (2012). The risk concept-historical and recent development trends. Reliability Engineering & System Safety, 99, 33-44.
  2. Aven, T. (2016). Risk assessment and risk management: Review of recent advances on their foundation. European Journal of Operational Research, 253(1), 1-13.
  3. Aven, T. (2023). Risk literacy: Foundational issues and its connection to risk science. Risk Analysis, 1-10.
  4. Aven, T., & van Kessenich, A. M. (2020). Teaching children and youths about risk and risk analysis: What are the goals and the risk analytical foundation?. Journal of Risk Research, 23(5), 557-570.
  5. Beck, U. (1992). Risk society: Towards a new modernity. London,UK: Sage.
  6. Bencze, L. (Ed.). (2017). Science and technology education promoting wellbeing for individuals, societies and environments: STEPWISE (Vol. 14). Dordrecht, Netherlands: Springer.
  7. Bencze, L., & Krstovic, M. (2017). Science students' ethical technology designs as solutions to socio-scientific problems. In L. Bencze (Ed.), Science and technology education promoting wellbeing for individuals, societies and environments (pp. 201-226). Dordrecht, Netherlands: Springer.
  8. Bryce, T., & Gray, D. (2004). Tough acts to follow: The challenges to science teachers presented by biotechnological progress. International Journal of Science Education, 26(6), 717-733.
  9. Burgess, A. (2015). Social construction of risk. In H. Cho, T. Reimer, & K. A. McComas (Eds.), The Sage handbook of risk communication (pp. 56-68). Los Angeles, CA: Sage.
  10. Christensen, C. (2009). Risk and school science education. Studies in Science Education, 45(2), 205-223.
  11. Covitt, B. A., & Anderson, C. W. (2022). Untangling trustworthiness and uncertainty in science: Implications for science education. Science & Education, 31(5), 1155-1180.
  12. Covitt, B. A., Gomez-Schmidt, C., & Zint, M. T. (2005). An evaluation of the risk education module. The Journal of Environmental Education, 36(2), 3-13.
  13. Cross, R. T. (1993). The risk of risks: A challenge and a dilemma for science and technological education. Research in Science and Technological Education, 11(2), 171-183.
  14. Crouch, E., & Wilson, R. (1983). Risk/Benefit analysis. Cambridge, MA: Ballinger.
  15. Eijkelhof, H. M. C. (1996). Radiation risk and science education. Radiation Protection Dosimetry, 68(3-4), 273-278.
  16. Gardner, G. E., & Jones, M. G. (2011). Science instructors' perceptions of the risks of biotechnology: Implications for science education. Research in Science Education, 41(5), 711-738.
  17. Gardner, G., Jones, G., Taylor, A., Forrester, J., & Robertson, L. (2009). Students' risk perceptions of nanotechnology applications: Implications for science education. International Journal of Science Education, 32(14), 1951-1969.
  18. Giddens, A. (1990). The consequences of modernity. Redwood City, CA: Stanford University Press.
  19. Gray, D. S., & Bryce, T. (2006). Socio-scientific issues in science education: implications for the professional development of teachers. Cambridge Journal of Education, 36(2), 171-192.
  20. Han, K., Heo, J., Yun, I., Lee, K., & Kang, H. (2012). Ethical problem solving in engineering: Matrix guide. Journal of Engineering Education Research, 15(1), 61-71.
  21. Hansen, J., & Hammann, M. (2017). Risk in science instruction: The realist and constructivist paradigms of risk. Science & Education, 26, 749-775.
  22. Hansson, S. O. (2010). Risk: Objective or subjective, facts or values. Journal of Risk Research, 13(2), 231-238.
  23. Hopkin, P. (2017). Fundamentals of risk management: Understanding, evaluating and implementing effective risk management. London, UK: Kogan Page Publishers.
  24. Howes, R. W. (1975). Radiation risks: A possible teaching topic? Physics Education, 10(6), 412.
  25. Jenkins, E. (2000). Science for all: Time for a paradigm shift. In J. Millar (Ed.), Improving science education: the contribution of research (pp. 207-226). London, UK: McGraw-Hill Education.
  26. Jho, H. (2015). A literature review of studies on decision-making in socio-scientific issues. Journal of the Korean Association for Science Education, 35(5), 791-804.
  27. Kang, Y. (2008). Risk epistemology and STS perspective. Journal of Science & Technology Studies, 8(2), 1-26.
  28. Kang, Y. (2015). An essay on the relationship between the risk communication and scientific citizenship of nuclear power in Korea. Journal of Science & Technology Studies, 15(1), 45-67.
  29. Kim, J., & Na, J. (2023). Elementary school teachers' educational experiences, readiness, and needs for science education that addresses the risks posed by science and technology. Journal of Korean Elementary Science Education, 42(4), 523-537.
  30. Kim, J., Na, J., & Cheong, Y. (2024). Risk education and educational needs related to science and technology: A study on science teachers' perceptions. Journal of the Korean Association for Science Education, 44(1), 57-75.
  31. Kolsto, S. D. (2006). Patterns in students' argumentation confronted with a risk-focused socio-scientific issue. International Journal of Science Education, 28(14), 1689-1716.
  32. Lee, H. (2018). What is SSI education? Seoul: Parkyoungsa.
  33. Lee, H., & Lee, H. (2016). Contextualized nature of technology in socioscientific issues. Journal of the Korean Association for Science Education, 36(2), 303-315.
  34. Lee, H., & Yang, J. (2019). Science teachers taking their first steps toward teaching socioscientific issues through collaborative action research. Research in Science Education, 49(1), 51-71.
  35. Lee, H., Choi, Y., Nam, C., Ok, S., Shim, S., Hwang, Y, & Kim, G. (2020). Development of the ENACT model for cultivating social responsibility of college students in STEM fields. Journal of Engineering Education Research, 23(6), 3-16.
  36. Levinson, R., & Turner, S. (2001). Valuable lessons. London, UK: The Wellcome Trust.
  37. Levinson, R., Kent, P., Pratt, D., Kapadia, R., & Yogui, C. (2011). Developing a pedagogy of risk in socio-scientific issues. Journal of Biological Education, 45(3), 136-142.
  38. Lupton, D. (Ed.). (1999). Risk and sociocultural theory: New directions and perspectives. Cambridge, UK: Cambridge University Press.
  39. McDaniels, T. L. (1998). Ten propositions for untangling descriptive and prescriptive lessons in risk perception findings. Reliability Engineering & System Safety, 59(1), 129-134.
  40. Morgan, A. (2011). Place-based education versus geography education? In G. Butt (Ed.), Geography, education and the future (pp. 84-108). New York, NY: Continuum International Publishing Group.
  41. Oehmen, J., Gunther, A., Herrmann, J. W., Schulte, J., & Willumsen, P. (2020, May). Risk management in product development: risk identification, assessment, and mitigation-a literature review. In proceedings of the design society: DESIGN conference (Vol. 1, pp. 657-666). Cambridge University Press.
  42. Park, W. (2020). Beyond the 'two cultures' in the teaching of disaster: Or how disaster education and science education could benefit each other. Educational Philosophy and Theory, 52(13), 1434-1448.
  43. Peel, A., Zangori, L., Friedrichsen, P., Hayes, E. & Sadler, T. (2019). Students' model-based explanations about natural selection and antibiotic resistance through socio-scientific issues based learning. International Journal of Science Education, 41, 510-532.
  44. Pietrocola, M., Rodrigues, E., Bercot, F., & Schnorr, S. (2021). Risk society and science education: Lessons from the COVID-19 Pandemic. Science & Education, 30(2), 209-233.
  45. Renn, O. (1998). The role of risk perception for risk management. Reliability Engineering & System Safety, 59(1), 49-62.
  46. Sadler, T. D. (2009). Situated learning in science education: Socio-scientific issues as contexts for practice. Studies in Science Education, 45(1), 1-42.
  47. Sadler, T. D., Friedrichsen, P., Zangori, L., & Ke, L. (2020). Technology-supported professional development for collaborative design of COVID-19 instructional materials. Journal of Technology and Teacher Education, 28(2), 171-177.
  48. Schenk, L., Hamza, K. M., Enghag, M., Lundegard, I., Arvanitis, L., Haglund, K., & Wojcik, A. (2019). Teaching and discussing about risk: Seven elements of potential significance for science education. International Journal of Science Education, 41(9), 1271-1286.
  49. Schenk, L., Hamza, K., Arvanitis, L., Lundegard, I., Wojcik, A., & Haglund, K. (2021). Socioscientific issues in science education: An opportunity to incorporate education about risk and risk analysis?. Risk Analysis, 41(12), 2209-2219.
  50. Seong, J., & Jung, B. (2007). Managing technology risk in a post-innovation world. Journal of Science & Technology Studies, 7(1), 33-66.
  51. Simonneaux, L., Panissal, N., & Brossais, E. (2013). Students' perception of risk about nanotechnology after an SAQ teaching strategy. International Journal of Science Education, 35(14), 2376-2406.
  52. Singleton, G., Herzog, H., & Ansolabehere, S. (2009). Public risk perspectives on the geologic storage of carbon dioxide. International Journal of Greenhouse Gas Control, 3(1), 100-107.
  53. Sjostrom, J. & Eilks, I. (2018). Reconsidering different visions of scientific literacy and science education based on the concept of Bildung. In Y. J. Dori, Z. Mevarech, & D. Baker (Eds.), Cognition, metacognition, and culture in STEM education (pp. 65-88). Dordrecht, Netherlands: Springer.
  54. Slovic, P. (1987). Perception of risk. Science, 236(4799), 280-285.
  55. Slovic, P. (1999). Trust, emotion, sex, politics, and science: Surveying the risk-assessment battlefield. Risk Analysis, 19(4), 689-701.
  56. Society for Risk Analysis[SRA]. (2015). Glossary society for risk analysis. SRA. https://www.sra.org/resources
  57. Till, C. (2014). Fostering risk literacy in elementary school. International Electronic Journal of Mathematics Education, 9(2), 83-96.
  58. Wojcik, A., Hamza, K., Lundegard, I., Enghag, M., Haglund, K., Arvanitis, L., & Schenk, L. (2019). Educating about radiation risks in high schools: towards improved public understanding of the complexity of low-dose radiation health effects. Radiation and Environmental Biophysics, 58, 13-20.
  59. Zeidler, D. L., Applebaum, S. M., & Sadler, T. D. (2011). Enacting a socioscientific issues classroom: Transformative transformations. In T. D. Sadler (Ed.), Socioscientific issues in the classroom (pp. 277-305). Dordrecht, Netherlands: Springer.
  60. Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89(3), 357-377.
  61. Zinn, J. O., & Taylor-Goodby, P. (2006). Risk as an interdisciplinary research area. In P. Taylor-Goodby (Ed.), Risk in social science (pp. 20-51). New York, NY: Oxford University Press.
  62. Zint, M., & Peyton, R. B. (2001). Improving risk education in grades 6-12: a needs assessment of Michigan, Ohio, and Wisconsin science teachers. The Journal of Environmental Education, 32(2), 46-54.