• Title/Summary/Keyword: 과학적 탐구의 특성

Search Result 232, Processing Time 0.029 seconds

An Analysis of Creativity Factors, Family Backgrounds and Pareanting Styles of 3 Great Korean in Their Childhood through Narrative Inquiry (내러티브 탐구를 통한 유년기 한국 위인 3인의 창의성 요소, 가정환경, 부모 양육방식 특징 분석)

  • Chae, Dong-Hyun;Jo, Dae-Young
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.14 no.3
    • /
    • pp.212-224
    • /
    • 2021
  • Early childhood education has a huge impact on the development of one's life. Therefore, it is necessary to implement effective education in childhood in order to develop abilities such as creativity, which is essential for future society. Thus, through narrative inquiry, the characteristics creativity factors, family backgrounds, and parenting styles of the three great Korean were identified, and the commonalities of the three were analyzed. Research shows that all three great people had intellectual curiosity and productive thinking skills. And most of them were born into economically rich families and had an environment where they could experience various things, and there were people who supported them. In addition, there were nurturing people around them who discovered talent and actively participated in education, and their parents formed a stable emotional attachment with their children.

Instructional Effect of Infographics Construction in Elementary Science (초등 과학 수업에서 학생주도 인포그래픽 구성 활동의 효과)

  • Lee, Heewoo;Lim, Heejun
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.5
    • /
    • pp.625-635
    • /
    • 2019
  • Students are exposed to many visual representations in various visual cultures. Infographics combining visual representations and writing can effectively convey information. Also it can be efficient ways for teachers to focus on important contents. Students can use infographics as a method directly to organize information. Therefore, the infographics that students use both writings and images directly and visually will be more effective on elementary school science classes than the workbook. Classes are guided with the same scientific inquiry and experiment written on the science textbook. The experimental group students organized scientific inquiry by infographics, while the comparison group students still used the workbook. First, the types of infographics are determined by what students want to explain. Based on learning objectives, students used the right type of infographics to effectively convey their focus on information. Second, the infographics organizing activities used in the classes had a significant effect on students' academic achievement. Also, the infographics organizing classes are positively associated to science-related attitudes, including such+ as 'Leisure Interest in Science', 'Adoption of Scientific Attitudes', and 'Attitude to Scientific Inquiry'. Third, visual tendency and classroom treatments had no interactions, but the experimental group had a positive impact regardless of student's characteristics. Fourth, experimental group showed positive attitudes toward to students' perception of infographics. Since some of students had difficulties organizing information in infographics, further research is required to enable students to reduce their burden in application of infographics.

Development of an Analytical Framework for Dialogic Argumentation in the Context of Socioscientific Issues: Based on Discourse Clusters and Schemes (과학관련 사회쟁점(SSI) 맥락에서의 소집단 논증활동 분석틀 개발: 담화클러스터와 담화요소의 분석)

  • Ko, Yeonjoo;Choi, Yunhee;Lee, Hyunju
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.3
    • /
    • pp.509-521
    • /
    • 2015
  • Argumentation is a social and collaborative dialogic process. A large number of researchers have focused on analyzing the structure of students' argumentation occurring in the scientific inquiry context, using the Toulmin's model of argument. Since SSI dialogic argumentation often presents distinctive features (e.g. interdisciplinary, controversial, value-laden, etc.), Toulmin's model would not fit into the context. Therefore, we attempted to develop an analytical framework for SSI dialogic argumentation by addressing the concepts of 'discourse clusters' and 'discourse schemes.' Discourse clusters indicated a series of utterances created for a similar dialogical purpose in the SSI contexts. Discourse schemes denoted meaningful discourse units that well represented the features of SSI reasoning. In this study, we presented six types of discourse clusters and 19 discourse schemes. We applied the framework to the data of students' group discourse on SSIs (e.g. euthanasia, nuclear energy, etc.) in order to verify its validity and applicability. The results indicate that the framework well explained the overall flow, dynamics, and features of students' discourse on SSI.

과학영재학교 교육과정 운영실태와 학생 반응분석

  • 문경근;박일영;박수경;정권순;추봉욱;곽미용
    • Proceedings of the Korean Society for the Gifted Conference
    • /
    • 2003.11a
    • /
    • pp.165-166
    • /
    • 2003
  • 2002년 3월부터 영재교육법 시행령이 적용됨에 따라 과학기술부에서는 교육인적자원부, 부산광역시 교육청과의 협약을 통하여 부산과학고등학교를 과학영재학교로 지정하였으며 2003년 3월 신입생 입학 이후 현재까지 운영되고 있다. 과학영재를 조기에 발굴하여 맞춤식 교육을 체계적으로 실천함으로써 지식기반 사회를 선도할 수 있는 창의적인 과학영재를 육성하려는 과학영재학교의 설립목적에 부합되도록 계획, 운영, 평가되기 위해서 현재 진행되고 있는 운영 전반에 대하여 점검 및 분석이 이루어질 필요가 있다. 이에 과학영재학교 운영상의 주요 측면인 교육과정 운영 분야에 대하여 그 실태와 학생 반응을 분석하는데 본 연구의 목적이 있다. 과학영재학교의 교육과정 기본 방침은 과학 분야에 대한 깊은 이해와 논리적, 비판적, 창의적 사고력과 태도를 통하여 지식을 창출하는 자기 주도적 탐구자의 양성을 전제로 하고 있으며 교육과정 편제는 교과, 자율연구, 위탁교육 및 특별활동으로 구성되어있다. 교과에는 국어, 사회, 외국어, 예체능을 포함하는 보통교과와 수학, 과학, 정보과학을 포함하는 전공교과가 있다(과학영재학교 교수요목안내서, 2003). 본 연구에서 교육과정 편제, R&E, 교수학습 및 평가의 하위 영역별로 그 실태와 각 영역별 학생 설문 결과를 분석한 결과는 다음과 같다. 첫째, 영재학교 교육과정 편제 및 운영에 대한 학생들의 인식을 조사한 결과, 심화 선택과목의 학점 비중을 더 높여야한다는 의견과 보통교과의 학점을 줄이고 전공교과의 학점을 늘려야 한다는 의견이 상대적으로 높게 나타났다. 이러한 결과는 대상 학생들이 과학영재학교 선발과정에서 수학, 과학 각 분야별 우수자로 선발된 경우가 많아 학생 개인적으로 자신감을 가지는 과목만 집중적으로 학습하고자 하는 의도의 반영으로 볼 수 있다. 이와 관련하여 영재교육과정의 운영지침(이상천, 2002)에 의하면, 대학 수준의 내용을 그대로 도입하는 속진보다 창의성과 사고력 계발에 보다 충실할 수 있도록 내용의 폭을 넓히고 접근방법을 달리하는 심화 중심으로 교육과정을 구성하고 운영한다고 하였다. 그러나 현재 개발된 교육과정 편성과 운영은 창의성 교육의 구현보다는 압축형 속진 교육과정의 특성이 강하여, 이와 같은 운영지침을 실현하기 어려운 것이 현실이므로 교육과정 편제의 개선이나 운영지침에 적합한 교육내용의 개발이 시급히 이루어져야 할 것이다. 둘째, R&E(Research & Education)는‘연구를 통한 교육’,‘교육을 통한 연구’를 의미하며 과학영재교육과정의 가장 큰 특징이라 할 수 있는 자율연구와 위탁교육을 위한 프로그램이다.

  • PDF

How Do Scientifically Gifted Students Think (과학영재들은 어떻게 사고하는가)

  • Han, Ki-Soon;Bae, Mi-Ran;Park, In-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.1
    • /
    • pp.21-34
    • /
    • 2003
  • This study aims to show how scientifically gifted students think in terms of Thinking Style Inventory based on Sternberg's theory of mental self-government and to examine the relationships between their thinking styles, intelligence and creativity. Two hundred and sixty-six middle school students (169 boys, 97 girls) who enrolled in a gifted education program participated in this study. Results indicated that scientifically gifted students prefer legislative, liberal, judical thinking styles, in comparison to general students, known to be related to creative and critical thinking rather than executive and conventional styles. There was no significant correlation between any of thinking style sub measures and Raven' Matrices and Scientific Aptitude Test, but some correlations were found among the sub measures of thinking style and TTCT. Whereas liberal students gained high originality scores, conventional students gained low fluency scores. Also, judical thinking style showed significant correlations with originality and flexibility TTCT sub scores. In sum, this study showed the characteristics of thinking styles of scientifically gifted students and provided implications for gifted education based on the findings presented.

Change and Characteristics of Interactions in a Homogeneous Group on Scientific Inquiry Experiments (동질모둠이 수행한 과학탐구실험에서 실험 진행에 따른 상호작용의 변화와 특성)

  • Seong, Suk-Kyoung;Choi, Byung-Soon
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.1
    • /
    • pp.75-88
    • /
    • 2008
  • The purpose of this study was to understand the factors affecting interactions as well as the students' learning process in small group activities. For this purpose, the changes and characteristics of students' interactions in scientific inquiry experiments were analyzed. This study focused on 2 homogeneous small groups of eighth graders. Students were involved in 13 inquiry experiments for one year and students' interactions in each experiments were observed and recorded using video/audio and the data recorded were transcribed. The analysis of data was based on the method of making a note by looking on and listening to the data repeatedly. Changes in the interactions of the two homogeneous groups differ remarkably. In small group A, owing to the conflicts of students' emotions, learning through social interactions became to be impossible. On the other hand, the interactions in small group B became more active. It seems that this changes are affected largely by the existence of peers who are able to mediate different opinions or feelings among group members. In general, middle school students were poor at receiving peers' opinion, cared a lot about writing reports. The less able students tended to be placed at a disadvantageous position in experiment lessons emphasizing social interactions. Four factors that affected the change of interactions were identified: Is the aim of experiments the understanding or completion of report? Is there any attitude towards peers' suggestions? Is there a disposition to care about peers? Is there any peer to mediate on peers' opinions or feelings? Educational implications of the progression of activities emphasizing interactions and the organization of grouping were drawn.

Development and Application of Open Inquiry Program : Focusing on the Students' Traits of Science Inquiring Ability and Repeated Feedback (초등학생을 위한 자유 탐구 프로그램 개발 및 적용: 학생의 과학 탐구 기능 특성 및 지속적 피드백을 중심으로)

  • Chang, Jin-A;Jhun, Young-Seok
    • Journal of Korean Elementary Science Education
    • /
    • v.29 no.2
    • /
    • pp.207-218
    • /
    • 2010
  • The revised curriculum in 2007 adds an open inquiry approach to increase students' creativity and interest in science. Because it is the first time for elementary students to perform the open inquiry due to the national curriculum, it is essential that teachers give students' successful experiences in order to build a positive impression about inquiry activity. The purpose of this research is to develop and apply the open inquiry program. The research findings are as follows: First, we analyzed the students' traits of open inquiry ability during the program. The third and fourth grade students showed weakness in operating and inquiring abilities. They also feared failure and were unable to concentrate in classes which were based on explanation or discussion. When students had unexpected results, however, their inquiring abilities and creativeness increased considerably. Additionally there were some students who were stressed during the science-inquiry activity, due to no interest in science and an inability to think scientifically. Second, we developed an open inquiry program for elementary students. The program was modified, reflected upon the students' traits during open inquiry in class. Through repeated feedback like this, we completed the program. Third, for those who studied in the lessons there was a meaningful change in students' science inquiry abilities and abilities to perform 'formulating a hypothesis' and 'the control of variables'. These students' level of self-inquiry performance improved steadily. Moreover, they obtained a strong attachment to their inquiry and understood the method of quantitative experiments.

  • PDF

A Design and Effect of STEAM PBL based on the History of Mathematics (수학사를 활용한 융합적 프로젝트기반학습(STEAM PBL)의 설계 및 효과 분석)

  • Lee, Minhee;Rim, Haemee
    • School Mathematics
    • /
    • v.15 no.1
    • /
    • pp.159-177
    • /
    • 2013
  • This study is a case study of STEAM education. We have developed teaching and learning materials, suggested teaching method, and analysed the result for exploring the potential and effect of STEAM. The content of this study is based on the history of mathematics. Science (S) is related to the 24 divisions of the year, the height of the sun, the movement of heavenly bodies. Technology (T) is related to the exploration with graphic calculators. Engineering (E) is related to design sundial and research on the design principles. Art (A) is related to literature review about mathematical history, the understanding of the value of the mathematics. Mathematics (M) is related to the trigonometric functions. We have considered that Project-Based Learning is proper teaching and learning for STEAM education, we have designed the STEAM PBL and analysed the results focused on the developing integrative knowledge, mathematical attitude including mathematical value, the competencies of 21 century. The result of this study is as follows. We find that STEAM education activates students' collaboration, communication skills and improves representation and critical thinking skills. Also STEAM education makes positive changes of students' mathematical attitudes including the values of the mathematics.

  • PDF

Qualitative Inquiry on Ways to Improve Science Instruction and Assessment for Raising High School Students' Positive Experiences on Science (고등학생의 과학긍정경험 향상을 위한 교수학습 및 평가 개선 방안에 대한 질적 탐구)

  • Kwak, Youngsun;Shin, Youngjoon;Kang, Hunsik;Lee, Sunghee;Lee, Il;Lee, Soo-Young;Ha, Jihoon
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.3
    • /
    • pp.337-346
    • /
    • 2020
  • In this study, we investigated the characteristics of students participating in Science Core high schools classes and their relevance to Positive Experiences on Science (hereinafter, PES), and factors causing PES, presented by the students of Science Core high schools. A total of 20 students and five teachers in four regions across the country participated in the in-depth interview, which were conducted with the focus group of students first, and then in-depth interviews with teachers. Based on the interview results, we explored teaching and learning experiences helpful to the PES, assessment experiences resulting in the PES, and ways to support Science Core high schools to enhance their PES. Students and teachers of Science Core high schools argued that students' participation will increase only if they engage in classes while drawing attention within the range that students can understand, students' PES such as scientific interest can be improved through experiments in which students choose topics or design their own exploration process, science competencies such as science problem solving ability and scientific thinking ability should be developed through exploratory experiment activities that fit the nature of science, etc. In addition, regarding ways to improve and support Science Core high schools to enhance PES, securing science class hours, restructuring the contents of science elective courses, and necessity of maintaining Science Core high schools are suggested. Based on the research results of science high school students' PES, ways to improve the PES of general high school students are discussed.

Analysis of Characteristics of Clusters of Middle School Students Using K-Means Cluster Analysis (K-평균 군집분석을 활용한 중학생의 군집화 및 특성 분석)

  • Jaebong, Lee
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.6
    • /
    • pp.611-619
    • /
    • 2022
  • The purpose of this study is to explore the possibility of applying big data analysis to provide appropriate feedback to students using evaluation data in science education at a time when interest in educational data mining has recently increased in education. In this study, we use the evaluation data of 2,576 students who took 24 questions of the national assessment of educational achievement. And we use K-means cluster analysis as a method of unsupervised machine learning for clustering. As a result of clustering, students were divided into six clusters. The middle-ranking students are divided into various clusters when compared to upper or lower ranks. According to the results of the cluster analysis, the most important factor influencing clusterization is academic achievement, and each cluster shows different characteristics in terms of content domains, subject competencies, and affective characteristics. Learning motivation is important among the affective domains in the lower-ranking achievement cluster, and scientific inquiry and problem-solving competency, as well as scientific communication competency have a major influence in terms of subject competencies. In the content domain, achievement of motion and energy and matter are important factors to distinguish the characteristics of the cluster. As a result, we can provide students with customized feedback for learning based on the characteristics of each cluster. We discuss implications of these results for science education, such as the possibility of using this study results, balanced learning by content domains, enhancement of subject competency, and improvement of scientific attitude.