• Title/Summary/Keyword: 과학적 사고과정

검색결과 553건 처리시간 0.026초

A Simulation program for verify and reappearance of motor vehicle accident (교통사고 조사 및 재현을 위한 시뮬레이션 프로그램에 관한 연구)

  • Kim, Dong-Hyun;Jeong, Yang-Kwon;Choi, Jae-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2010
  • The research which needs when the traffic accident occurs, the assailant and the victim as the assault person the gain and loss as the damage person does in necessity. Produces shame information which is scientific about the traffic accident which occurs, importance in the effect of visual, about the program which based on the fact that provides the tool which is used from the process which reappears an accident embodies is a thing in the objective self-acknowledgement assailant and the victim. From the research which sees traffic accident site easily, will compose and the fact that applies according to in necessary accident investigation process of the simulation program will be able to reappear goal. From the insurance company and the police station expressed the frame about traffic accident and the sample result to apply reappears from the side of visual the application value was expected with the tool which appropriate in accident control is easy very and is.

The Development of a Model for the Enhancement of Creative and Critical Thinking Skills through Hypotheses generating Activities and It's Applications on Teaching Science (가설 제안 활동을 통한 창의적 사고력과 비판적 사고력 신장에 기여하는 모델 개발 및 과학 교수에서 그 활용)

  • Kang, Soon-Hee
    • Journal of The Korean Association For Science Education
    • /
    • 제28권5호
    • /
    • pp.482-494
    • /
    • 2008
  • The purpose of this study was to introduce a practical model to enhance creative and critical thinking skills through hypotheses generating activities for students. The 2007 Science National Curricula stresses the need for the enhancement of creative thinking skills for our students. The definition for the creativity in the narrow sense is the divergent thinking skills. The definition of the critical thinking skills is the strong sense of those skills. This model shows the use of the divergent thinking skills and convergent thinking skills together. The divergent thinking skills has been developed by making three alternative explanations about the causal question within a group of students by active discussion. The following procedure includes the selection of the most provable of the three explanations within a group of students also by active discussions. This process needs convergent thinking skills as well as critical thinking skills. This model can be used easily by exchanging from the one explanation about the causal question in any inquiry teaching strategy to three explanations about one. Although the partial modified strategy shows a small difference from any inquiry teaching strategy, but the effect of the enhancement of the creative thinking skills for our students shows significantly better (p<.05). More detailed study will be carried out in the near future.

Effect of Systems Thinking Based STEAM Education Program on Climate Change Topics (시스템 사고에 기반한 STEAM 교육 프로그램이 기후변화 학습에 미치는 효과)

  • Cho, Kyu-Dohng;Kim, Hyoungbum
    • The Journal of the Korea Contents Association
    • /
    • 제17권7호
    • /
    • pp.113-123
    • /
    • 2017
  • This research is designed to review the systems thinking and STEAM theory while ascertaining the effects of the classroom application of the STEAM programs based on systems thinking appropriate for studying climate change. The systems thinking based STEAM program has been developed by researchers and experts, who had participated in expert meetings in a continued manner. The program was applied to science classes over the course of eight weeks. Therefore, the application effects of the systems thinking based STEAM program were analyzed in students' systems thinking, STEAM semantics survey, and students' academic achievement. The findings are as follows. First, the test group has shown a statistically meaningful difference in the systems thinking analysis compared to the control group in the four subcategories of 'Systems Analysis', 'Personal Mastery', 'Shared Vision' and 'Team Learning' except for 'Mental Model'. Second, in the pre- and post-knowledge tests, the independent sample t-test results in the areas of science, technology, engineering, art and mathematics show statistically meaningful differences compared to the control group. Third, in the academic performance test regarding climate change, the test group displayed higher achievement than the control group. In conclusion, the system-based STEAM program is considered appropriate to enhance amalgamative thinking skills based on systems thinking. In addition, the program is expected to improve creative thinking and problem-solving abilities by offering new ideas based on climate change science.

Analysis of Secondary School Students' System Thinking on the Cycle of Matter in Earth System: Considering the Impact of Human Activity on the Cycle (지구 시스템 내 물질 순환에 대한 중·고등학교 학생들의 시스템 사고 분석: 인간의 활동이 순환에 미치는 영향을 고려하여)

  • Oh, Hyunseok;Lee, Kiyoung;Kim, Kwonjung
    • Journal of Science Education
    • /
    • 제45권3호
    • /
    • pp.275-291
    • /
    • 2021
  • The purpose of this study is to analyze the level and characteristics of system thinking of middle and high school students on cycle of matter in the Earth system considering the impact of human activities on the cycle. For this purpose, we developed items for assessment and assessment rubric through the analysis of 2015 revised curriculum and applying systems thinking, respectively. Middle and high school students who participated in the Korea Earth Science Olympiad were the subjects of this study. The level of system thinking was determined using the assessment rubric for student responses collected using items for assessment. The characteristics of system thinking were identified using word analysis. Based on these, the improvement of the curriculum considering the impact of human activities was discussed. The results of the study are as follows: first, the system thinking level of most secondary school students was low in identifying or classifying system elements for matter cycle, and high levels, such as system relationship or generalization of patterns, were found to be relatively small. It was found that students had a higher level of system thinking in the carbon cycle than in the water cycle. Second, in terms of the characteristics of system thinking about water cycle, water was recognized as a major system element and mainly related with evaporation between atmosphere and other system elements. Whereas, in the carbon cycle, carbon dioxide was regarded as a major system element, and photosynthesis and respiration were represented in relation with the biosphere. Third, for education considering the impact of human activities on the matter cycle in the Earth system, it is proposed improving the curriculum considering the socio-ecological system by extending the existing earth system.

Analysis and Effects of High School Students' Systems Thinking Using Iceberg(IB) Model (Iceberg(IB) 모델을 적용한 고등학생의 시스템 사고 분석 및 효과)

  • Lee, Hyundong;Lee, Hyonyong
    • Journal of The Korean Association For Science Education
    • /
    • 제37권4호
    • /
    • pp.611-624
    • /
    • 2017
  • The purposes of this study are to explore Iceberg(IB) model as a systems thinking analysis tool for high school students, suggest a systems thinking analysis method using rubrics and verify its validity and reliability. For this study, the theoretical basis was examined through literature analysis about IB model and rubrics of evaluating the systems thinking. And 6 high school students participated in IB model activity and were interviewed about polar climate change. In addition, quantitative tests using systems thinking scale were also conducted to support the results of the IB model activity analysis. Data obtained from IB model activity was analyzed by using the rubrics of evaluating system thinking developed by Hung (2008). The analysis results were reviewed by two professors to confirm the validity and reliability. In order to confirm the validity, correlation analysis were performed between the rubrics and the quantitative test results. Finding are as follows: Six students used the IB model to express their systems thinking in detail and the results of the systems thinking analysis of students using rubrics showed a distribution of 17~35 points. Furthermore, the results of correlation analysis between rubrics and systems thinking scale was highly correlated (Pearson product-moment is .856) on significance level from .05. Using the IB model introduced in this study, students express their systems thinking effectively and the results of the systems thinking analysis using IB model is considered to analyze validity and reliability. Based on the results of this study, implication suggests how to study the systems thinking in science education.

Cognition of Students Gifted in Science on Pseudo Science (사이비과학에 대한 과학영재들의 인식)

  • Jhun, Young-Seok;Shin, Young-Joon
    • Journal of The Korean Association For Science Education
    • /
    • 제25권3호
    • /
    • pp.353-363
    • /
    • 2005
  • In this thesis, the cognition of students gifted in science on pseudo science was studied in order to acquire basic data to develop a learning program. As a first step, the difference of cognition on pseudo science between science-gifted students and general students in elementary, middle and high schools was studied. Findings revealed that science-gifted students had more negative thought on pseudo science than general students. In addition, there was no progress in their cognition on pseudo science as entered higher grades. Secondly, the cognition of students in a science high school, three times over a 6-month period, was studied. Through this study, it was found that student concepts of pseudo science was not firm, and it is quite possible to induce students to think logically and rationally with the help of a well-organized learning program. Lastly, the factors that might affect student ideas on pseudo science were researched. Students were affected by media such as television and books and also by personal experience. Therefore, students should be trained to correctly judge information presented in the media as authentic or false. Moreover, they should also be provided chances to look back on positive astrological experiences.

A Comparative Analysis of Achievement Standards of the 2007 & 2009 Revised Elementary Science Curriculum with Next Generation Science Standards in US based on Bloom's Revised Taxonomy (Bloom의 신교육목표분류체계에 기초한 2007 및 2009 개정 초등학교 과학과 교육과정과 미국의 차세대 과학 표준(Next Generation Science Standards)의 성취기준 비교 분석)

  • Choi, Jung In;Paik, Seoung Hye
    • Journal of The Korean Association For Science Education
    • /
    • 제35권2호
    • /
    • pp.277-288
    • /
    • 2015
  • The purpose of this study is to find the point for improvement through the comparative analysis of the 2007 & 2009 revised science curriculum, and the NGSS of the United States with Bloom's revised taxonomy. The results of the analysis confirmed that the revised curriculum in 2009 compared to the revised curriculum in 2007 has expanded the type of cognitive process and knowledge, which promote a higher level thinking. However, the revised curriculum in 2009 has been biased to the type of specific cognitive process and knowledge in cognitive process dimension and knowledge dimension as compared to the NGSS of the United States. In the revised curriculum in 2009, the type of cognitive process such as 'analyze,' 'evaluate,' 'create,' and the type of knowledge such as 'meta-cognitive knowledge' have been treated inattentively. In addition, through comparative analysis, it was identified that the type of cognitive process and knowledge that were neglected in achievement standards were not dealt with in the learning objective of teachers' guides, either. The revised curriculum should consist of achievement standards in comparison to the previous curriculum to reflect better the goals of science education. Therefore, it is necessary to create an achievement standards including various types of cognitive processes and knowledge by improving the method of statement of achievement standards of science curriculum.

Considerations on the Making of Scientific Content and Processing of Biological Knowledge (생명과학 지식의 가공과 콘텐츠화 과정에 대한 연구)

  • Ahn, Sun-Young;Kim, San-Ha;Jang, Yi-Kweon
    • The Journal of the Korea Contents Association
    • /
    • 제11권11호
    • /
    • pp.503-513
    • /
    • 2011
  • Appreciation of nature and an understanding of the biological sciences by the general public are key to the popularization of modern science. In particular, informal and accessible venues such as museum exhibits occupy a crucial role in science education, and they depend heavily on fields related to macrobiology, including Ecology, Animal Behavior, and Environmental Science. Unfortunately, lack of engaged experts and superficial descriptions of natural phenomena all too often prevent scientific knowledge from being shared effectively with the general public. Raw information itself and knowledge are not in a form or structure accessible to nonspecialists. In order to move successfully deliver substantive comprehension of the biological knowledge to the general public, it is necessary to categorize information from a content-conscious perspective and transform it into useful biological content. Therefore, the role of scientists is critically important in a series of processes that include theme selection, editing, and even graphical layout of contents. These processes require not only a scientific and logical way of thinking, but also an aptitude for artistic presentation and effective communication. The concept of Translation is presented as a theoretical and operational framework for the popularization of science.

창의성과 비판적 사고

  • Kim, Yeong Jeong
    • Korean Journal of Cognitive Science
    • /
    • 제13권4호
    • /
    • pp.80-80
    • /
    • 2002
  • The main thesis of this article is that the decisive point of creativity education is the cultivation of critical thinking capability. Although the narrow conception of creativity as divergent thinking is not subsumed under that of critical thinking, the role of divergent thinking is not so crucial in the science context of creative problem-solving. On the contrary, the broad conception of creativity as focusing on the reference to utility and the third conception of creativity as a process based on the variation and combination of existing pieces of information are crucial in creative problem-solving context, which are yet subsumed under that of critical thinking. The emphasis on critical thinking education is connected with the characteristics of contemporary knowledge-based society. This rapidly changing society requires situation-adaptive or situation-sensitive cognitive ability, whose core is critical thinking capability. Hence, the education of critical thinking is to be centered on the learning of blowing-how and procedural knowledge but not of knowing-that and declarative knowledge. Accordingly, the learning of critical thinking is to be headed towards the cultivation of competence but not just of performance. In conclusion, when a rational problem-solving through critical and logical thinking turns out consequently to be novel, we call it creative thinking. So, creativity is an emergent property based on critical and logical thinking.

창의성과 비판적 사고

  • 김영정
    • Korean Journal of Cognitive Science
    • /
    • 제13권4호
    • /
    • pp.81-90
    • /
    • 2002
  • The main thesis of this article is that the decisive point of creativity education is the cultivation of critical thinking capability. Although the narrow conception of creativity as divergent thinking is not subsumed under that of critical thinking, the role of divergent thinking is not so crucial in the science context of creative problem-solving. On the contrary, the broad conception of creativity as focusing on the reference to utility and the third conception of creativity as a process based on the variation and combination of existing pieces of information are crucial in creative problem-solving context, which are yet subsumed under that of critical thinking. The emphasis on critical thinking education is connected with the characteristics of contemporary knowledge-based society. This rapidly changing society requires situation-adaptive or situation-sensitive cognitive ability, whose core is critical thinking capability. Hence, the education of critical thinking is to be centered on the learning of blowing-how and procedural knowledge but not of knowing-that and declarative knowledge. Accordingly, the learning of critical thinking is to be headed towards the cultivation of competence but not just of performance. In conclusion, when a rational problem-solving through critical and logical thinking turns out consequently to be novel, we call it creative thinking. So, creativity is an emergent property based on critical and logical thinking.

  • PDF