• Title/Summary/Keyword: 과학적 논변 활동

Search Result 24, Processing Time 0.023 seconds

Exploring Small Group Argumentation and Epistemological Framing of Gifted Science Students as Revealed by the Analysis of Their Responses to Anomalous Data (변칙 사례에 대한 과학 영재 학생들의 반응에서 드러난 인식론적 프레이밍과 소집단 논변활동 탐색)

  • Lee, Eun Ju;Yun, Sun Mi;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.3
    • /
    • pp.419-429
    • /
    • 2015
  • In this study, we explored students' epistemological framing during scientific argumentation and how interactions among group members influenced group argumentation. Twenty-one gifted science students divided into groups of three or four participated in this study. Students' discussions related to data interpretation concerning the rate of photosynthesis were analyzed. Students' activities were videotaped in groups so the discourse could be transcribed and students' behavioral cues analyzed. Students' epistemological framing has been identified through analysis of their speech and behavioral responses to the anomalous data from the inquiry process. Subsequently, their sources of warrant and group argumentation levels were explored. We found out that group members framed the inquiry in two ways: "understanding phenomena" and "classroom game." Group members whose framing was "understanding phenomena" required other members to justify the anomalous data by examining its validity and reliability, which conclusively demonstrated a high level of argumentation. On the other hand, when group members used "classroom game" to frame their argumentation, they did not recognize the necessity of explaining the anomalous data; rather, these students used simple empirical justification to explain the data, reflecting a low level of argumentation. When students using different epistemological framing disagreed over interpretations of anomalous data throughout the discussion, clashes ensued that resulted in emotional conflict and a lack of discussion. Students' framing shifts were observed during the discussion on which group leaders seemed to have a huge influence. This study lays the foundation for future work on establishing productive framing to prompt scientific argumentation in science classrooms.

Issues and Effects in Developing Inquiry-Based Argumentation Task for Science Teachers: A Case of Charles' Law Experiment (탐구 실험을 활용한 과학교사 논변 과제 개발과정에서 드러난 쟁점 및 수정 효과: 기체에 대한 샤를의 법칙 실험 사례)

  • Baek, Jongho;Jeong, Dae Hong;Hwang, Seyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.2
    • /
    • pp.79-92
    • /
    • 2014
  • The purpose of this study is to develop an inquiry-based argumentation task for use in science teachers' professional development by providing them with the substantial experience of argumentation. To do so, the study has developed an argumentation task by utilizing the experiment on the Charles' Law of gas and revised by applying to eight teachers three times. We have revised the questions by analyzing three issues that have been revealed throughout this process in ways that facilitated teachers' argumentation. The effects of revision have been confirmed by the improvements in teachers' argumentation pattern. Three issues have been identified in developing argumentation tasks for science teachers' professional development and they are as follows: determining the openness of the structure of a question, achieving cognitive conflict and convergence of opinions at the same time, and ways of utilizing various evidence. As the task has been revised in ways that enabled scientific approach to the inquiry topic and facilitated the convergence of various opinions, the participants' argumentation patterns have improved both quantitatively and qualitatively. Meanwhile, the inclusion of an actual experiment has not influence their argumentation, while the observation of experimental data has been used as the core evidence according to the character of the problem. Based on the study's result, we suggest practical implications for developing argumentation tasks for science teachers in more varying contexts.

Exploring a Teacher's Argumentation-Specific Pedagogical Content Knowledge Identified through Collaborative Reflection and Teaching Practice for Science Argumentation (협력적 성찰과 과학 논변수업 실행에서 드러난 교사의 논변특이적 PCK 탐색)

  • Kim, Suna;Lee, Shinyoung;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.6
    • /
    • pp.1019-1030
    • /
    • 2015
  • This study examined the development of a teacher's teaching practice and identified argumentation-specific pedagogical content knowledge (PCK) and the influence of the argumentation-specific PCK on teaching practice in an argumentation classroom. The teacher has a Ph.D degree in science education, a 19-year teaching career, and no experience in instructing in an argumentation classroom. The developed program consists of nine lessons regarding photosynthesis for 7th graders. The teacher participated in a collaborative reflection with researchers after each lesson once a week and five times in total, which lasted for thirty minutes. All of the lessons were video- and audio-recorded and the transcript of lessons and collaborative reflection, pre- and post-survey related to argumentation, and researchers' journals were analyzed. Analysis of the data showed that the teacher emphasized group interaction showing utterances of listening, evaluating arguments, counter-arguing/debating, and reflecting on argument process after the fourth lesson although the teacher focused on individual argumentation showing utterances of talking, knowing meaning of argument, and justifying with evidence in the first three lessons. Also, the argumentation-specific PCK, which was identified with the understanding of students, nature of argumentation and argumentation task strategy, also influenced the development of teaching practice. The teacher comprehended the students' challenges in argumentation, developed her understanding of the nature of argumentation from an individual plane to social plane, and demonstrated a deep understanding of the task strategy by voluntarily joining in modifying the argumentation tasks.

Development and Application of the Scientific Inquiry Tasks for Small Group Argumentation (소집단의 논변활동을 위한 과학 탐구 과제의 개발과 적용)

  • Yun, Sun-Mi;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.5
    • /
    • pp.694-708
    • /
    • 2011
  • In this study, we developed tasks including cognitive scaffolding for students to explain scientific phenomena using valid evidences in science classroom and sought to investigate how tasks influence the development of small group scientific argumentation. Heterogeneous small groups in gender and achievement were organized in one classroom and the tasks were applied to the class. Students were asked to write down their own ideas, share individual ideas, and then choose the most plausible opinion in a group. One group was chosen for investigating the effect of tasks on the development of small group argumentation through the analysis of discourse transcripts of the group in 10 lessons, students' semi-structured interview, field note, and students' pre- and post argument tests. The discrepant argument examples were included in the tasks for students to refute an argument presenting evidences. Moreover, comparing opinion within the group and persuading others were included in the tasks to prompt small group argumentation. As a result, students' post-argument test grades were increased than pre-test grades, and they argued involving evidences and reasoning. The high level of arguments has appeared with high ratio of advanced utterances and lengthening of reasoning chain as lessons went on. Students had elaborate claims involving valid evidences and reasoning by reflective and critical thinking while discussing about the tasks. In addition, tasks which could have various warrants based on the data led to students' spontaneous participation. Therefore, this study has significance in understanding the context of developing small group argumentation, providing information about teaching and learning context prompting students to construct arguments in science inquiry lessons in middle school.

Analyzing the Effectiveness of Argumentation Program to Conceptualize the Concept of Natural Selection for Elementary Science-Gifted Students (초등과학영재들의 자연선택 개념 형성을 위한 논변활동 효과 분석)

  • Park, Chuljin;Cha, Heeyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.4
    • /
    • pp.591-606
    • /
    • 2016
  • The purpose of this study is to develop the argumentation program to build scientific concepts on natural selection for science-gifted elementary students and to know how to implement this program. For this study, nine key concepts about natural selection such as the overproduction of offspring, limited resources, population stability, competition, variation, heredity of variation, differential survival, change of the population and speciation were selected through the literature study. The programs were developed by learning cycle instructional model. Argument writings and discourses have been collected, analyzed and compared before and after the program. Two questionnaires to compare pre and post concept change consist of multiple choice questionnaire and open-ended response question were developed and applied to 19 science-gifted elementary students. Sufficiency of the explanation and conceptual quality of the explanation were used to assess the quality of their arguments before and after the program. Discourse and visual models collected from the highest and lowest group about score improvement were compared. The scores of the gifted statistically improved significantly in multiple choice questionnaire. Students' alternative conceptions about natural selection at the beginning of the program decreased and changed scientifically after the program. Visual models drawn by the students supported the results as well. This study asserts that elementary science-gifted students are able to explain evolutionary perspectives about organism change and use the key concepts of natural selection. The study means that evolutionary perspective is possible to be reflected in elementary science curriculum for the gifted.

Escaping Uncertainty: Elementary Students' Emotional-Cognitive Rebuttals in the Argumentation of "Why Did the Kidney Beans not Germinate?" (불확실함에서 벗어나기까지: "왜 강낭콩이 싹트지 않았을까?" 논변 활동에서 초등학생들의 정서-인지적 반박)

  • Han, Moonhyun
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • In scientific argumentation, students can use rebuttals to escape uncertainty, which, in this case, can be defined as a vague and fuzzy feeling about other students' explanations. As rebuttals can play a critical role in the sophistication of arguments and the alleviation of uncertainty, this study aims to understand the dynamics of uncertainty and rebuttals by exploring the context of the uncertainty experienced by elementary school students in the argumentation of "Why did the kidney beans not germinate?" and to get insights based on the research results. Twenty fourth-grade students and their homeroom teacher in Kyong-Ki province, South Korea, took part in the research. Students engaged in argumentation in five small groups of four students. The researcher collected qualitative data through video transcriptions, student interviews, and field notes. In the data analysis, the researcher employed the constant comparative method to explore in what context students experienced uncertainty and how they used rebuttals. The results of this study were as follows: First, students tried to reduce their uncertainty through argumentation on why the kidney beans did not germinate. Second, students used elaboration-oriented rebuttals, personal opinion-oriented rebuttals, and blame-oriented rebuttals to reduce this uncertainty. However, when they used blame-oriented rebuttals, their uncertainty and negative emotions increased. Third, intervention by the teacher led students to stop using blame-oriented rebuttals. Instead, they employed elaboration-oriented rebuttals to explore why the kidney beans would not sprout, and finally, they escaped uncertainty by discovering an appropriate explanation. Based on the findings of this study, the researcher discussed how the interaction between uncertainty and elaboration-oriented rebuttals could shape and facilitate argument development in elementary school students.

Exploratory Research on Automating the Analysis of Scientific Argumentation Using Machine Learning (머신 러닝을 활용한 과학 논변 구성 요소 코딩 자동화 가능성 탐색 연구)

  • Lee, Gyeong-Geon;Ha, Heesoo;Hong, Hun-Gi;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.2
    • /
    • pp.219-234
    • /
    • 2018
  • In this study, we explored the possibility of automating the process of analyzing elements of scientific argument in the context of a Korean classroom. To gather training data, we collected 990 sentences from science education journals that illustrate the results of coding elements of argumentation according to Toulmin's argumentation structure framework. We extracted 483 sentences as a test data set from the transcription of students' discourse in scientific argumentation activities. The words and morphemes of each argument were analyzed using the Python 'KoNLPy' package and the 'Kkma' module for Korean Natural Language Processing. After constructing the 'argument-morpheme:class' matrix for 1,473 sentences, five machine learning techniques were applied to generate predictive models relating each sentences to the element of argument with which it corresponded. The accuracy of the predictive models was investigated by comparing them with the results of pre-coding by researchers and confirming the degree of agreement. The predictive model generated by the k-nearest neighbor algorithm (KNN) demonstrated the highest degree of agreement [54.04% (${\kappa}=0.22$)] when machine learning was performed with the consideration of morpheme of each sentence. The predictive model generated by the KNN exhibited higher agreement [55.07% (${\kappa}=0.24$)] when the coding results of the previous sentence were added to the prediction process. In addition, the results indicated importance of considering context of discourse by reflecting the codes of previous sentences to the analysis. The results have significance in that, it showed the possibility of automating the analysis of students' argumentation activities in Korean language by applying machine learning.

Exploring Small Group Argumentation Shown in Designing an Experiment: Focusing on Students' Epistemic Goals and Epistemic Considerations for Activities (실험 설계에서 나타난 소집단 논변활동 탐색: 활동에 대한 인식적 목표와 인식적 이해를 중심으로)

  • Kwon, Ji-suk;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.1
    • /
    • pp.45-61
    • /
    • 2016
  • The purpose of this study is to explore students' epistemic goals and considerations in designing an experiment task and to investigate how a shift in the students' epistemology affected their argumentation. Four 7th grade students were selected as a focus group. According to the results, when they designed their own experiment, their epistemic goal was 'scientific sense-making' and their epistemic considerations - the perception of the nature of the knowledge product was 'this experiment should explain how something happened', the perception of the justification was 'we need to use our interpretation of the data' and the perception of the audience was 'constructor' - contributed to designing their experiment actively. When students tried to select one argument, their epistemic goal shifted to 'winning a debate', showing 'my experiment is better than the others' with the perception of the audience, 'competitor'. Consequently, students only deprecated the limits of different experiment so that they did not explore the meaning of each experiment design deeply. Eventually, student A's experiment design was selected due to time restrictions. When they elaborated upon their result, their epistemic goal shifted to 'scientific sensemaking', reviewing 'how this experiment design is scientifically valid' through scientific justification - we need justification to make members accept it - acting as 'cooperator'. Consequently, all members engaged in a productive argumentation that led to the development of the group result. This study lays the foundation for future work on understanding students' epistemic goals and considerations to prompt productive argumentation in science classrooms.

Exploring the Role of Collaborative Reflection in Small Group Argumentation: Focus on Students' Epistemic Considerations and Practices (소집단 논변 활동에서 협력적 성찰의 역할 탐색 -학생들의 인식적 고려와 실행을 중심으로-)

  • Cho, Hanbit;Ha, Heesoo;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • This study aims to explore students' epistemic practices and considerations, which are explained as underlying epistemic thoughts that guide their epistemic practices, during argumentation in science classrooms. We also investigated how collaborative reflection facilitated the development of such epistemic considerations. Two seventh-grade classes participated in this study by engaging in argumentation activities and collaborative reflection after classes. A group with students' change in epistemic aspects and the influence of collaborative reflection clearly revealed from their practices was chosen as a focus group. We recorded their class discussions and collaborative reflections with the researchers. Transcriptions of the recordings and checklists we collected during the collaborative reflections were used for analysis. Results showed evident changes in the students' epistemic considerations and practices and four factors facilitating such developments were identified. First, the researcher facilitating the students to recognize each other as collaborators during collaborative reflection led development of epistemic considerations on "audience using the knowledge products." Second, the collaborative reflection facilitated construction of context for peer interactions where the students encouraged each other to participate in the discussion, resulting in the development of other students' epistemic considerations on "justifications in knowledge products." Third, the items provided on the checklists explicitly delineated expectations on their practices in argumentation, also facilitating development of epistemic considerations. Lastly, the students' imitation of the researcher's pattern of discourse facilitated construction of causal explanation and development of epistemic considerations on "nature of the knowledge products." This study will contribute to the construction of strategies that develop students' epistemic considerations and productive epistemic practices in argumentation.

버지스-로젠 딜레마와 유명론

  • Lee, Jin-Hui
    • Korean Journal of Logic
    • /
    • v.11 no.1
    • /
    • pp.1-31
    • /
    • 2008
  • 최근 가장 영향력 있는 수학적 실재론과 관련된 논변은 버지스와 로젠의 딜레마이다. 일종의 반-유명론적 논증인 버지스-로젠 딜레마는 유명론자들이 취할 수 있는 제한된 선택지를 제시한 후 그 어느 선택지도 적절하지 못함을 주장하는 것이다. 논자 역시 버지스-로젠 딜레마가 성립한다면 유명론이 가망 없는 전략임에 동의한다. 그러나 논자는 그들의 논의가 유명론 대 실재론이라는 대립구도 대신, 유명론 대 수학 및 과학이라는 잘못된 대립구도를 전제하고 있음을 본 논문을 통해 밝히고자 한다. 간략히 말해, 논자는 버지스-로젠 딜레마는 수학자 및 과학자들의 주장이 글자 그대로 실재론을 함의함을 전제하는데, 이것은 실제 수학 및 과학 활동과 일치하지 않을뿐더러, 이를 입증하기 위해서는 철학적 가정이 개입해야 함을 밝히고, 그 과정에서 유명론의 가능성을 모색하고자 한다. 이러한 논자의 전략은 유명론 진영 안의 특정한 입장을 지지하는 것은 아니다. 버지스-로젠 딜레마는 특정한 유명론의 문제라기보다는 유명론 자체의 가능성과 관련된 것이기 때문이다.

  • PDF