• Title/Summary/Keyword: 과학성

Search Result 35,112, Processing Time 0.061 seconds

Risk Assessment of Pine Tree Dieback in Sogwang-Ri, Uljin (울진 소광리 금강소나무 고사발생 특성 분석 및 위험지역 평가)

  • Kim, Eun-Sook;Lee, Bora;Kim, Jaebeom;Cho, Nanghyun;Lim, Jong-Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.3
    • /
    • pp.259-270
    • /
    • 2020
  • Extreme weather events, such as heat and drought, have occurred frequently over the past two decades. This has led to continuous reports of cases of forest damage due to physiological stress, not pest damage. In 2014, pine trees were collectively damaged in the forest genetic resources reserve of Sogwang-ri, Uljin, South Korea. An investigation was launched to determine the causes of the dieback, so that a forest management plan could be prepared to deal with the current dieback, and to prevent future damage. This study aimedto 1) understand the topographic and structural characteristics of the area which experienced pine tree dieback, 2) identify the main causes of the dieback, and 3) predict future risk areas through the use of machine-learning techniques. A model for identifying risk areas was developed using 14 explanatory variables, including location, elevation, slope, and age class. When three machine-learning techniques-Decision Tree, Random Forest (RF), and Support Vector Machine (SVM) were applied to the model, RF and SVM showed higher predictability scores, with accuracies over 93%. Our analysis of the variable set showed that the topographical areas most vulnerable to pine dieback were those with high altitudes, high daily solar radiation, and limited water availability. We also found that, when it came to forest stand characteristics, pine trees with high vertical stand densities (5-15 m high) and higher age classes experienced a higher risk of dieback. The RF and SVM models predicted that 9.5% or 115 ha of the Geumgang Pine Forest are at high risk for pine dieback. Our study suggests the need for further investigation into the vulnerable areas of the Geumgang Pine Forest, and also for climate change adaptive forest management steps to protect those areas which remain undamaged.

Quality Preservation of Shredded Carrots Stored in UV LED Packaging System (자외선 LED 포장용기 시스템에 의한 포장절단당근의 품질보존)

  • Kim, Nam Yong;Lee, Dong Sun;An, Duck Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.135-140
    • /
    • 2014
  • Pre-storage ultra-violet (UV) light treatment on fresh produce is known to inactivate the contaminated microorganisms, activate the defense system, and delay ripening extending the shelf life. As UV light emitting diode (LED) becomes available at a relatively low price, continuous or intermittent UV treatment during chilled storage is possible in a container or package. This study attempted an in situ UV LED treatment on fresh produce stored under a refrigerated container in order to see its potential in the fresh produce storage and further optimize its application conditions. The effect of in-container UV LED irradiation on the quality preservation of shredded carrots was investigated in the air and modified atmosphere (MA) conditions. Two sets of experiment with Escherichia coli inoculation and with natural microbial flora in the air (two 30 minute on-off cycles of 1 $diode/dm^2$ per day at a location above 2 cm) showed a clear and significant effect of the UV LED irradiation on the suppression of microbial growth: 280 nm was the most effective by maintaining a lower microbial count by at least 0.5 log (CFU/g) throughout the 6 day storage period. The carotenoids content of shredded carrots subjected to UV LED treatment at 365 and 405 nm in the air was higher than that of the control shredded carrots. In MA condition of $O_2$ of 1.2~4.3% and $CO_2$ of 8.4~10.6% being indifferent with LED wavelengths, 280 nm UV LED irradiation was also effective in inhibiting the microbial growth. While there was no observed difference in the carotenoids content between untreated and UV LED-treated shredded carrots in MA, UV LED irradiation at 365 and 405 nm was slightly better in DPPH radical scavenging activity. The use of UV LED in storage container or package seems to give the benefits of preserving the microbial and nutritional qualities of minimally processed fruits and vegetables.

Biological Activity of Extracts from Chrysanthemum incidicum Linne by Ultrafine Grinding (미세분쇄에 의한 감국(Chrysanthemum incidicum Linne) 추출물의 생리활성)

  • Cho, Young-Je
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.110-117
    • /
    • 2014
  • In this study, the biological activity of water and ethanol extracts from Chrysanthemum incidicum Linne by ultrafine grinding for functional food source are examined. The content of phenolic compounds from Chrysanthemum incidicum Linne were the highest when extracted for 6 hr with 70% ethanol. The extraction yield of water and ethanol extracts were $7.12{\pm}1.61$ mg/g and $7.51{\pm}2.14$ mg/g, respectively. With ultrafine grinding, water and ethanol extracts were $8.63{\pm}1.15$ mg/g and $9.33{\pm}1.35$ mg/g, respectively. In determining anti-oxidative activity of Chrysanthemum incidicum Linne extracts, DPPH of normal grinding extracts was 83.52% and ultrafine grinding was 92.37%. In ABTS radical cation decolorization, normal grinding, fine grinding, and ultrafine grinding extracts were 90% or higher. In antioxidant protection factor (PF), water and ethanol extracts of ultrafine grinding showed relatively high anti-oxidative activities of each 1.82 PF and 2.16 PF, respectively. The TBARS value of ultrafine grinding extracts were lower than normal grinding and fine grinding extracts. The inhibition activity on xanthin oxidase of Chrysanthemum incidicum Linne extracts was 67.53% in ultrafine grinded water extracts and 83.45% in ultrafine grinded ethanol extracts. Inhibition on xanthin oxidase of ethanol extracts showed a higher inhibition effect than water extracts, and ultrafine grinding was higher than normal grinding. In angiotensin converting enzyme inhibition activity, ultrafine grinding water extract was 24% or higher, and ethanol extract was 34% or higher. The elastase inhibition activity of ultrafine grinding extract was 25.56%, which was higher than 20.34% of fine grinding extracts. Water extracts did not show hyaluronidase inhibition activity but ethanol extracts showed 35% of hyaluronidase inhibition activity. The determining expression inhibition of iNOS and COX-2 protein in macrophage by Chrysanthemum incidicum Linne extracts with a Western blot analysis, iNOS and COX-2 protein expression inhibition by Chrysanthemum incidicum Linne ethanol extracts were 40% and 15%, respectively at 100 ${\mu}g/mL$ concentration. The inhibitory patterns of iNOS and COX-2 protein expression was concentration dependent. The result suggests that Chrysanthemum incidicum Linne extracts by ultrafine grinding may be more useful than normal grinding as potential sources due to anti-oxidation, angiotensin converting enzyme and xanthine oxidase inhibition, anti-inflammation effect.

Protective Effects of Enzymatic Oyster Hydrolysate on Acetaminophen-induced HepG-2 Cell Damage (아세트아미노펜 유도 HepG-2 세포주 손상에 대한 굴 효소 가수분해물의 보호 효과)

  • Park, Si-Hyang;Moon, Sung-Sil;Xie, Cheng-Liang;Choung, Se-Young;Choi, Yeung-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1166-1173
    • /
    • 2014
  • This study investigated the detoxification effects of enzymatic hydrolysate from oyster on acetaminophen-induced toxicity using HepG-2 cells. Oyster hydrolysate was made with 1% Protamex and 1% Neutrase after treatment with transglutaminase (TGPN) or without (PN). Two types of oyster hydrolysate were added to human-derived HepG-2 hepatocytes damaged by acetaminophen, after which the survival rate of HepG-2 cell was measured. In addition, glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) activities in the culture media were evaluated. The survival rates of HepG-2 cells were $136.2{\pm}1.4%$ at $100{\mu}g/mL$ of TGPN and $179.6{\pm}3.8%$ at $200{\mu}g/mL$ of TGPN. These cell survival rates were higher compared to that of the negative control group ($60.7{\pm}3.2%$) treated only with acetaminophen. GOT activity was $38.3{\pm}0.2$ Karmen/mL in the negative control group, whereas it was $19.9{\pm}0.5$ for TGPN ($200{\mu}g/mL$) and $22.0{\pm}2.4$ Karmen/mL for PN ($200{\mu}g/mL$). GOT and GTP activities were shown to be dependent on TGPN concentration, and significant reduction in activities could be conformed. The detoxification efficacy of TGPN was higher compared to that of PN. These results suggest that oyster hydrolysate has potential as a healthy food or pro-drug for liver protection.

Sulfur Dioxide, Mineral Contents and Physicochemical Properties Generated during Manufacture of Bamboo Salt (죽염 제조공정에 따른 이산화황, 미네랄 함량 및 이화학적 특성)

  • Kim, Hag-Lyeol;Lee, Seong-Jae;Lee, Jung-Hee;Kim, In-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1248-1256
    • /
    • 2014
  • The purpose of this study was to investigate the mechanisms of behind $SO_2$ formation and elevated cause of reducing power in purple bamboo salt (PBS) along with an analysis of physicochemical properties, content of sulfur compounds, oxidation reduction potential (ORP), mineral contents of salt type (MSS, mudflat solar salt; BS, bamboo salt), and addition of raw bamboo (RB). $SO_2$ content of 630 ppm was detected in PBS. $SO_2$ was not detected in MSS, BS, or RB, whereas $SO_2$ (782 ppm) from $K_2SO_4$ was detected after heating a NaCl, KCl, $MgCl_2$, $MgSO_4$, MgO, $CaCl_2$, $K_2SO_4$, and $FeSO_4$ with RB. $SO_2$ content of BS increased with baking time, and it originated from BSRB1 (13.88 ppm) to BSRB4 (109.13 ppm). $SO_3{^{2-}}$ originated only from MSSRB4 and BSRB2~BSRB4. Sulfate ion content decreased along with increasing $SO_2$ and sulfite ion contents. ORP increased with baking time of MSS and BS, and it was present at higher levels in BSRB4 (-211.40 mV) of BS than MSS. Insoluble content was higher in BS than MSS. Further, Ca, K, and Mg ion contents decreased in MSS and increased in BS with baking time. BSRB4 had 1.4 fold higher levels of Ca, 1.5 fold higher levels of Mg, and 1.8 fold higher levels of K than BS. Li, Al, Mn, Fe, and Sr in MSS as well as Al, Fe, and Ni in BS increased with baking time. Anions (Cl, $NO_3$, and Br) and heavy metals (Pb, Cd, Hg, and As) between MSS and BS were not significantly different. These results suggest that the reducing power of BS was due to $SO_2$ and sulfite ion. To increase the amounts of these compounds and reducing power, higher melting temperature and longer baking time are necessary along with BS, which is created by the addition of RB to roasted salt.

Quality Characteristics and Antioxidant Activity of Vinegar Supplemented Added with Akebia quinata Fruit during Fermentation (으름 열매 식초의 품질특성 및 항산화 활성)

  • Lee, Eun-Kyoung;Kwon, Woo-Young;Lee, Ji-Won;Yoon, Jin-A;Chung, Kang-Hyun;Song, Byeong Chun;An, Jeung Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1217-1227
    • /
    • 2014
  • This study investigated the physicochemical properties and antioxidant activity of vinegar added with different levels (0%, 1%, 3%, 5%, and 7%) of Akebia quinata fruit during two-step fermentation. The physicochemical properties of vinegar evaluated were pH, total acidity, alcohol, and total sugar and amino acid contents. The antioxidant activities were based on ABTS radical scavenging activity, SOD-like activity, and reducing power. During alcohol fermentation, total acidity and alcohol contents of vinegar increased, but total sugar contents decreased. During acid fermentation, total acidities of vinegar increased. Vinegar added with 7% A. quinata fruit showed the highest total sensory score. Total polyphenol contents of vinegar added with 0% and 1% A. quinata fruit were not significantly different. However, vinegar added with 3, 5, and 7% A. quinata fruit showed significantly higher total polyphenol contents of 136.6, 381.59, and 415.35 mg/100 g, respectively, after 13 days of fermentation. Further, total flavonoid contents of vinegar added with 0~7% A. quinata fruit significantly increased to 21.73, 15.79, 15.15, 26.19, and 26.87 mg/100 g, respectively, after 13 days of fermentation. In addition, tannin contents of vinegar added with 0~7% A. quinata fruit significantly increased to 0.2042, 0.2004, 0.1255, 0.1384, and 0.1255 mg/100 g, respectively, after 13 days of fermentation. Moreover, ABTS radical scavenging activities of vinegar added with 0~7% A. quinata fruit significantly increased to 5.87, 12.59, 25.63, 34.02, and 35.25, respectively, after 13 days of fermentation at a concentration of 5 mg/mL. Additionally, SOD-like activities of vinegar added with 0~7% A. quinata fruit significantly increased to 8.22, 17.49, 16.86, 16.89, and 15.68%, respectively, after 13 days of fermentation. Reducing power of 7% A. quinata fruit was 0.527 after 1 day and 1.539 at the end of fermentation. Our results demonstrate that antioxidant activity significantly increased during fermentation according to the content of A. quinata. Further, the total polyphenol, flavonoid, and tannin contents were shown to be closely related with antioxidant activities. Thus, A. quinata could be effectively used as a vinegar and functional food material based on its antioxidant activity.

Ethanol Extract from Cnidium monnieri (L.) Cusson Induces G1 Cell Cycle Arrest by Regulating Akt/GSK-3β/p53 Signaling Pathways in AGS Gastric Cancer Cells (AGS 위암세포에서 Akt/GSK-3β/p53 신호경로 조절을 통한 벌사상자 에탄올 추출물의 G1 Cell Cycle Arrest 유도 효과)

  • Lim, Eun Gyeong;Kim, Eun Ji;Kim, Bo Min;Kim, Sang-Yong;Ha, Sung Ho;Kim, Young Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.417-425
    • /
    • 2017
  • Cnidium monnieri (L.) Cusson is distributed in China and Korea, and the fruit of C. monnieri is used as traditional Chinese medicine to treat carbuncle and pain in female genitalia. In this study, we examined the anti-proliferation and cell cycle arrest effects of ethanol extracts from C. monnieri (CME) in AGS gastric cancer cells. Our results show that CME suppressed cell proliferation and induced release of lactate dehydrogenase (LDH) in AGS cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and LDH assay. Cell morphology was altered by CME in a dose-dependent manner. In order to identify the cell cycle arrest effects of CME, we investigated cell cycle analysis after CME treatment. In our results, CME induced cell cycle arrest at G1 phase. Protein kinase B (Akt) plays a major role in cell survival mechanisms such as growth, division, and metastasis. Akt protein regulates various downstream proteins such as glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) and tumor protein p53 (p53). Expression levels of p-Akt, p-GSK-$3{\beta}$, p53, p21, cyclin E, and cyclin-dependent kinase 2 (CDK2) were determined by Western blot analysis. Protein levels of p-Akt, p-GSK-$3{\beta}$, and cyclin E were reduced while those of p53, p21, and p-CDK2 (T14/Y15) were elevated by CME. Moreover, treatment with CME, LY294002 (phosphoinositide 3-kinase/Akt inhibitor), BIO (GSK-$3{\beta}$ inhibitor), and Pifithrin-${\alpha}$ (p53 inhibitor) showed that cell cycle arrest effects were mediated through regulation of the Akt/GSK-$3{\beta}$/p53 signaling pathway. These results suggest that CME induces cell cycle arrest at G1 phase via the Akt/GSK-$3{\beta}$/p53 signaling pathway in AGS gastric cancer cells.

Comparison of Nutritional Compositions of Green Vegetables (나물의 영양성분 비교)

  • Jin, Yong-Xie;Kim, Hyeon-Young;Kim, Se-Na;Lee, Ji-Yoon;Seo, Dongwon;Choi, Youngmin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.5
    • /
    • pp.592-599
    • /
    • 2017
  • This study examined the nutritional compositions of seven raw and blanched green vegetables: Amaranthus mangostanus L. (AM), Aster scaber Thunberg, Taraxacum platycarpum H. Dahlstedt (TP), Oenanthe javanica (Blume) DC, Allium tuberosum Rottler, Ligularia fischeri (Ledeb.) Turcz (LF), and Euonymus alatus (Thunb.) Siebold (EA). Proximate compositions (moisture, protein, ash, dietary fiber, and fat), minerals (calcium, phosphorus, iron, potassium, sodium, and magnesium), and vitamins (riboflavin and vitamin C) were analyzed in the study. In this study, moisture contents of raw and blanched green vegetables were 71.28~92.68 g/100 g and 76.90~92.09 g/100 g, respectively. The protein and fat contents of raw LF (33.38 g/100 g and 4.50 g/100 g dry weight basis, respectively) were higher than those of other cultivars. Ash contents of AM were significantly higher than those of their respective raw samples. Potassium, magnesium, calcium, and sodium contents of AM were 7,710.63 mg/100 g, 1,786.67 mg/100 g, 1,534.44 mg/100 g, and 743.18 mg/100 g, respectively. In the case of raw green vegetables, iron content of TP was 55.23 mg/100 g, which was the highest value among tested green vegetables. Total dietary fiber content of EA was 59.75 g/100 g, which was the highest value. Riboflavin content was highest in the raw and blanched LF (3.10 mg/100 g and 3.05 mg/100 g, respectively). Vitamin C contents of raw and blanched EA were 468.28 mg/100 g and 471.42 mg/100 g, respectively, which were higher than the other values. There were differences in nutritional ingredients according to different types of green vegetables. Therefore, it is advisable to evenly ingest various green vegetables.

Mechanisms of Suppression of Matrix Metalloproteinases in UVB-Irradiated HaCaT Keratinocytes of Colored Rice Varieties (UVB에 조사된 HaCaT Keratinocytes에서의 유색미에 의한 Matrix Metalloproteinases 발현억제 메커니즘)

  • Choi, Eun-Young;Lee, Jae-Bong;Kim, Do-Hoon;Kwon, Yong-Sham;Cheon, Jung-Yoon;Lee, Jin-Tae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.5
    • /
    • pp.562-571
    • /
    • 2017
  • In this study, we investigated the anti-oxidant activities [electron-donating ability (EDA), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging ability, and reactive oxygen species (ROS) inhibitory activity], anti-wrinkle activities [collagenase inhibitory activity, suppression and/or phosphorylation of matrix metalloproteinases (MMPs), and mitogen-activated protein (MAP) kinase activity], and mRNA expression levels using reverse transcription-polymerase chain reaction (RT-PCR) assay in ultraviolet (UV) B ray ($50mJ/cm^2$)-irradiated human keratinocyte HaCaT cells. Josaengheugchal, Sinneungheugchal (SE), Shintoheug rice, Heugjinju rice, and Heugseol (HE) among colored rice varieties were reported to have excellent antioxidant properties. In the EDA and ABTS radical scavenging assays, extracts of the five colored rice varieties had scavenging activities of 72% at concentrations higher $50{\mu}g/mL$. In the collagenase inhibition assay, ethanol extracts of the five colored rice varieties showed high inhibitory effects of about 60% at concentrations higher $25{\mu}g/mL$. In the ROS inhibition assay, ethanol extracts of HE and SE showed very excellent inhibition efficacies at all concentrations. We determined molecular biological mechanisms of MMPs (MMP-1, -3, -8, and -13) and mitogen-activated protein kinase (MAPK) with HE, and the results show that HE suppressed expression of MMPs and phosphorylation of MAPK and increased expression of pro-collagen type I in UVB-irradiated cells. It was also confirmed by RT-PCR that HE reduced expression of MMPs mRNA. Therefore, these results suggest that HE has anti-wrinkle and collagen production effects and may be used as a material in the development of functional food and cosmetic industries.

Biological Activities of Extracts from Okkwang (Castanea crenata) Chestnut Bur (옥광(Castanea crenata) 밤송이 추출물의 생리활성 효과)

  • Lee, Eun Ho;Hong, Shin Hyub;Cho, Young Je
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.5
    • /
    • pp.572-580
    • /
    • 2017
  • The contents of phenolic compounds in water and 40% ethanol extracts from Okkwang (Castanea crenata) chestnut bur solid (OCS) were $11.24{\mu}g/50{\mu}g$ solid and $10.28{\mu}g/50{\mu}g$ solid, respectively. The 1,1-diphenyl-2-picrylhydrazyl free radical scavenging and 2,2'-azino-bis(3-ethylbenzothiazoline- 6-sulfonic acid) radical decolorization activities of water and ethanol extracts were 85% and 100% as well as 87% and 86% at a solid content of $50{\mu}g/mL$, respectively. The anti-oxidant protection factors (PFs) of water and ethanol extracts at a solid content of $200{\mu}g/mL$ were 1.22 PF and 1.45 PF, respectively. Thiobarbituric acid reactive substance were 83% in water extract and 73% in ethanol extract at a solid content of $200{\mu}g/mL$. The inhibitory activities against xanthine oxidase in water and ethanol extracts were 54% and 43% at a solid content of $200{\mu}g/mL$, respectively. The inhibitory activities against ${\alpha}$-glucosidase were 95% in water extract and 96% in ethanol extract at a solid content of $50{\mu}g/mL$. Tyrosinase inhibitory activity was 27% in ethanol extract at a solid content of $200{\mu}g/mL$. The collagenase and elastase inhibitory activities as anti-wrinkle effect were 93% and 11% in water extract as well as 94% and 56% in ethanol extract at a solid content of $200{\mu}g/mL$. Hyaluronidase inhibitory activity as anti-inflammatory effect of water and ethanol extracts were 96% and 52% at a solid content of $200{\mu}g/mL$, respectively. The results show that extracts from OCS can be used as a functional resource with antioxidant, anti-gout, carbohydrate degradation inhibitory, whitening, anti-wrinkle, and anti-inflammatory activities.