• Title/Summary/Keyword: 과학기술 데이터

Search Result 2,575, Processing Time 0.045 seconds

Extraction of Author Identification Elements of Overseas Academic Papers on Authority Data System for Science and Technology (과학기술 전거데이터 시스템에서의 해외 학술논문 저자 식별요소 추출)

  • Choi, Hyunmi;Lee, Seokhyoung;Kim, Kwangyoung;Kim, Hwanmin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.711-713
    • /
    • 2013
  • Various human resource information of the world can be found according to spread of social network such as facebook and twitter. There are an amounts of researcher information on the science and technology area but it is difficult to find a suitable researcher for research or business such as research partner, because researcher information is not systematically arranged. To solver this problem, we are constructing authority data system for science and technology based on authority information of overseas academic papers. In this paper, in order to construct the authority data, we extracts author identification elements from millions of overseas academic papers, which are published from 1994 to 2012. There are more than 50 author identification elements such as author name, affiliation, paper title, publisher, year, keywords, co-author, co-author's affiliation in Korean, English, Chinese, and Japanese. We construct the element database by extracting and storing an author identification information based on the elements from overseas academic papers. Future works includes that the authority database for overseas academic papers is constructed by storing an academic activities of researchers after author clustering with these extracted elements. The authority data is used to improve the researcher information utilization and activate community to find a suitable research partner or a business examiner.

  • PDF

Draft Design of AI Services through Concept Extension of Connected Data Architecture (Connected Data Architecture 개념의 확장을 통한 AI 서비스 초안 설계)

  • Cha, ByungRae;Park, Sun;Oh, Su-Yeol;Kim, JongWon
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.30-36
    • /
    • 2018
  • Single domain model like DataLake framework is in spotlight because it can improve data efficiency and process data smarter in big data environment, where large scaled business system generates huge amount of data. In particular, efficient operation of network, storage, and computing resources in logical single domain model is very important for physically partitioned multi-site data process. Based on the advantages of Data Lake framework, we define and extend the concept of Connected Data Architecture and functions of DataLake framework for integrating multiple sites in various domains and managing the lifecycle of data. Also, we propose the design of CDA-based AI service and utilization scenarios in various application domain.

A Study on Improving Performance of Software Requirements Classification Models by Handling Imbalanced Data (불균형 데이터 처리를 통한 소프트웨어 요구사항 분류 모델의 성능 개선에 관한 연구)

  • Jong-Woo Choi;Young-Jun Lee;Chae-Gyun Lim;Ho-Jin Choi
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.7
    • /
    • pp.295-302
    • /
    • 2023
  • Software requirements written in natural language may have different meanings from the stakeholders' viewpoint. When designing an architecture based on quality attributes, it is necessary to accurately classify quality attribute requirements because the efficient design is possible only when appropriate architectural tactics for each quality attribute are selected. As a result, although many natural language processing models have been studied for the classification of requirements, which is a high-cost task, few topics improve classification performance with the imbalanced quality attribute datasets. In this study, we first show that the classification model can automatically classify the Korean requirement dataset through experiments. Based on these results, we explain that data augmentation through EDA(Easy Data Augmentation) techniques and undersampling strategies can improve the imbalance of quality attribute datasets, and show that they are effective in classifying requirements. The results improved by 5.24%p on F1-score, indicating that handling imbalanced data helps classify Korean requirements of classification models. Furthermore, detailed experiments of EDA illustrate operations that help improve classification performance.

Prompt-based Data Augmentation for Generating Personalized Conversation Using Past Counseling Dialogues (과거 상담대화를 활용한 개인화 대화생성을 위한 프롬프트 기반 데이터 증강)

  • Chae-Gyun Lim;Hye-Woo Lee;Kyeong-Jin Oh;Joo-Won Sung;Ho-Jin Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.209-213
    • /
    • 2023
  • 최근 자연어 이해 분야에서 대규모 언어모델 기반으로 프롬프트를 활용하여 모델과 상호작용하는 방법이 널리 연구되고 있으며, 특히 상담 분야에서 언어모델을 활용한다면 내담자와의 자연스러운 대화를 주도할 수 있는 대화생성 모델로 확장이 가능하다. 내담자의 상황에 따라 개인화된 상담대화를 진행하는 모델을 학습시키려면 동일한 내담자에 대한 과거 및 차기 상담대화가 필요하지만, 기존의 데이터셋은 대체로 단일 대화세션으로 구축되어 있다. 본 논문에서는 언어모델을 활용하여 단일 대화세션으로 구축된 기존 상담대화 데이터셋을 확장하여 연속된 대화세션 구성의 학습데이터를 확보할 수 있는 프롬프트 기반 데이터 증강 기법을 제안한다. 제안 기법은 기존 대화내용을 반영한 요약질문 생성단계와 대화맥락을 유지한 차기 상담대화 생성 단계로 구성되며, 프롬프트 엔지니어링을 통해 상담 분야의 데이터셋을 확장하고 사용자 평가를 통해 제안 기법의 데이터 증강이 품질에 미치는 영향을 확인한다.

  • PDF

Object Detection Method Using Adversarial Learning on Domain Discriminator (도메인 판별기의 적대적 학습을 이용한 객체 검출 방법)

  • Hyeonseok Kim;Yeejin Lee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.91-94
    • /
    • 2022
  • 자율주행 자동차 개발 연구가 활발히 진행됨에 따라 객체 검출기의 성능이 중요하게 되었다. 딥러닝 기술의 발전하면서 객체 검출기의 성능도 큰 발전을 이루었다. 그에 따라 도로 위 차량 검출기의 성능도 발전하고 있으나 평상시 낮 도로상황에서 잘 동작하던 모델은 안개가 끼거나 밤 상황이 되면 제대로 동작하지 못하는 문제를 가지고 있다. 이유는 딥러닝 모델이 학습할 때 사용한 데이터셋의 정보에 따라 특정 도메인에 편향된 특성을 학습하기 때문이다. 따라서, 본 논문에서는 객체 검출 신경망에 도메인 판별기를 적용하여 이와 같은 도메인 이동 문제를 극복하는 모델을 제안한다. 모델의 성능을 Cityscapes 데이터셋과 Foggy Cityscapes 데이터셋을 사용하여 평가한 결과, 기존의 특정 도메인에서 학습한 모델보다 제안하는 모델의 검출 성능이 개선된다는 것을 확인하였다.

  • PDF

Research on the Prediction of Maritime Traffic Congestion based on Big Data (빅데이터 기반 선박 교통 혼잡도 예측에 관한 연구)

  • Jae-Yong Oh;Hye-Jin Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.15-16
    • /
    • 2023
  • 해상교통관제 구역은 항만 시설을 사용하기 위한 입·출항 선박, 연안 해역을 이동하는 선박 등이 서로 복잡하게 운항하는 교통 패턴을 가지고 있다. 이를 안전하고 효과적으로 관리하기 위해 해상교통관제센터(VTS)에서는 선박을 실시간 모니터링하며 관제 업무를 수행하고 있지만, 교통 혼잡 상황에서는 업무 로드의 증가로 인해 관제 공백이 발생하기도 한다. 이에 교통 혼잡도 및 혼잡 구역을 예측한다면보다 효율적인 관제가 가능하지만 현재는 관제사의 경험에 전적으로 의존하고 있는 실정이다. 본 논문에서는 VTS 관점에서의 교통 혼잡을 정의하고, 과거 항적 데이터를 이용하여 항내 선박 교통 혼잡도 및 혼잡 구역을 예측하는 방법을 제안하였다. 또한, 실해역 데이터(대산항 VTS)를 적용하여 제안된 기술이 관제지원 도구로서 활용될 수 있는지 검토하였다.

  • PDF

A Study on the Prediction of River Water Level Using Artificial Neural Network Theory and Unstructured Data (인공신경망 이론과 비정형데이터를 활용한 하천수위 예측에 관한 연구)

  • Lee, Jeongha;Hwang, SeokHwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.388-388
    • /
    • 2020
  • 매년 국지성호우 및 태풍으로 인해 하천 범람이나 저지대침수가 발생하고 있으며 이는 인명 피해 사례로 이어지기도 한다. 피해 발생을 최소화시키기 위해 강우와 유량과 같은 정형데이터로 홍수예보가 이뤄지고 있으나 기존의 정형데이터만 사용하다보니 도심지역이나 소규모 하천에서 인명 피해 예측에 어려움이 있다. 이를 보완하기 위해서는 인구의 유동성을 고려한 비정형데이터를 활용해야 한다. 최근 소셜 네트워크 서비스(SNS)의 사용자가 증가됨에 따라 텍스트나 사진과 같은 다양한 비정형데이터가 생성되고 있다. 이렇게 생성된 데이터는 다양한 분야에서 활용되고 있으며 특히 지진이나 홍수와 같은 재난 발생 시 유용한 데이터로 활용된 사례가 증가하고 있다. 이는 사람들이 GIS와 같은 위치정보나 시간 등을 포함한 다양한 정보를 포함하기 때문이다. 하지만 이렇게 생산된 비정형데이터를 기존 물리적 기반의 수문모형의 데이터로 활용하기에는 많은 한계점이 있다. 따라서 본 연구에서는 SNS 채널을 통해 생성된 비정형 데이터들을 인공신경망모형에 적용하여 하천수위를 예측하였다.

  • PDF

긴급상황 시 선박 대피항로 선정 지원 기술 시뮬레이션 검증 : 비상투묘와 충돌위험도 중심으로

  • Sin, Dae-Un;Yang, Chan-Su;Jeon, Ho-Gun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.82-82
    • /
    • 2019
  • 해상에서 긴급상황 발생 시 선박운항자는 짧은 시간에 신속 정확한 의사 결정을 할 필요가 있다. 이를 위해서 해양사고(충돌, 좌초, 화재, 엔진고장, 조타고장) 심각성에 따른 대피항로(해경선, 비상투묘, 표류, 임의좌주, 주변선박) 선정 알고리즘을 설계하였고, 선박운항자를 위한 긴급대피지원안내 시스템을 개발 중에 있다. 본 연구에서는 대피항로 선정 지원 기술 중 비상투묘와 충돌위험도를 중심으로 시스템 적용 모델의 타당성의 평가하고 알고리즘의 신뢰성을 검증하였다. 비상투묘 지원 기술의 검증을 위해 국내외 해양사고 보고서 및 재결서를 분석하고 알고리즘에 적용해 결과를 비교하였다. 충돌위험도를 검증하기 위해 재결서의 선박 충돌 사고 사례를 시뮬레이션으로 재현하였고, 시뮬레이션 기록 데이터를 기반으로 PARK model, IWRAP MK2 프로그램을 이용해 충돌위험도를 평가하였다. 본 연구의 결과를 통해 해양사고 발생 시 선박과 인명 피해를 최소화할 수 있을 것으로 예상된다.

  • PDF

The Study for Mobile Information Service based on the SyncML (SyncML 기반의 이동 정보 서비스에 대한 연구)

  • Chung, In-Hye;Han, Jae-Il
    • Annual Conference of KIPS
    • /
    • 2003.05b
    • /
    • pp.843-846
    • /
    • 2003
  • 현재 주식정보나 과학기술정보 등에 대한 이동 정보 서비스가 무선 인터넷을 통해 사용자에게 제공되고 있으나 상호호환성이 어려운 단점이 있다 본 연구는 과학기술정보 서비스를 대상으로 개방형 표준 데이터 동기화 프로토콜로 제시된 SyncML(Synchronization Markup Language)기술을 이용하여 사용자들에게 자신의 이동 단말기를 통한 원문보기 및 과학기술정보를 이동 단말기에 제공할 수 있는 시스템의 설계 및 구현에 대하여 논한다.

  • PDF

A Method For Preventing Data Looping in Multi Tactical Datalink Operation (다중 전술데이터링크 운용에 따른 데이터 루핑 방지 방안)

  • Woo, Soon;Lim, Jae-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.314-321
    • /
    • 2013
  • In this paper, we have proposed a method which can prevent data looping in multi tactical data-link operating situation. Because the situation of multi tactical data-link in Korea would be more complex than ever before, data looping is more likely to be happened. To prevent data looping, forwarder has to manage TQ(Track Quality) in forwarded track message by degrading it to enlarge correlation gate. Forwarder also has to discard useless track message which can be determined by minimum TQ value. To decide optimal formula for forwarder to degrade TQ and to determine minimum TQ, a research about track motion, correlation, TQ managing, etc in real system is necessary.