Web service implementations are now rapidly growing. Web services are easily achieved by XML messaging for most programming languages. Applications usually utilize web services through APIs tied to a specific implementation of SOAP. nML is a dialect of SML and OCaml made in ROPAS. The soaptype type in nML is defined for the value of SOAP encoding. SOAP encoding specification defines rules for serialization of a graph of typed objects using XML Schema. XML Schema validates XML SOAP value. The soaptype type is encoded to XML and decoded from XML. It is necessary to guarantee safe encoding and decoding. So, the definitions for element and type definition in XML Schema are specified by element type and typeinfo type, which include the part of the definitions of XML Schema specification.
4 차 산업혁명 시대의 도래와 함께 AI, ICT 기술의 융합이 진행됨에 따라, 유저 레벨의 디바이스에서도 AI 서비스의 요청이 실현되었다. 이미지 처리와 관련된 AI 서비스는 피사체 판별, 불량품 검사, 자율주행 등에 이용되고 있으며, 특히 Deep Convolutional Neural Network (DCNN)은 이미지의 특색을 파악하는 데 뛰어난 성능을 보여준다. 하지만, 이미지의 크기가 커지고, 신경망이 깊어짐에 따라 연산 처리에 있어 낮은 데이터 지역성과 빈번한 메모리 참조를 야기했다. 이에 따라, 기존의 계층적 시스템 구조는 DCNN 을 scalable 하고 빠르게 처리하는 데 한계를 보인다. 본 연구에서는 DCNN 의 scalable 하고 빠른 처리를 위해 3 차원 메모리 구조의 Processing-In-Memory (PIM) 가속기를 제안한다. 이를 위해 기존 3 차원 메모리인 Hybrid Memory Cube (HMC)에 하드웨어 및 소프트웨어 모듈을 추가로 구성하였다. 구체적으로, Processing Element (PE)간 데이터를 공유할 수 있는 공유 캐시 및 소프트웨어 스택, 파이프라인화된 곱셈기 및 듀얼 프리페치 버퍼를 구성하였다. 이를 유명 DCNN 알고리즘 LeNet, AlexNet, ZFNet, VGGNet, GoogleNet, RestNet 에 대해 성능 평가를 진행한 결과 기존 HMC 대비 40.3%의 속도 향상을 29.4%의 대역폭 향상을 보였다.
Subject classification of thesis units is essential to serve scholarly information deliverables. However, to date, there is a journal-based topic classification, and there are not many article-level subject classification services. In the case of academic papers among domestic works, subject classification can be a more important information because it can cover a larger area of service and can provide service by setting a range. However, the problem of classifying themes by field requires the hands of experts in various fields, and various methods of verification are needed to increase accuracy. In this paper, we try to classify topics using the unsupervised learning algorithm to find the correct answer in the unknown state and compare the results of the subject classification algorithms using the coherence and perplexity. The unsupervised learning algorithms are a well-known Hierarchical Dirichlet Process (HDP), Latent Dirichlet Allocation (LDA) and Latent Semantic Indexing (LSI) algorithm.
e-Science는 고성능 컴퓨팅 장비와 네트워킹 장비를 이용하여 각종 첨단 실험장비, 대용량 데이터, 연구인력 등을 시간 공간의 제약 없이 동시에 활용하도록 하여 연구 생산성을 혁신적으로 향상시킬 수 있다. 이를 효과적으로 지원하기 위해서는 서로 떨어져 있는 연구자들 간의 협업을 위한 기반을 제공하는 것은 매우 기본적인 서비스이다. e-Science로 진행되는 미래형 협업을 위한 지원은 연구자간의 단순한 화상회의에서부터 고성능 네트워크와 컴퓨팅 자원에 기반을 두어 과학적 가시화(scientific visualization)를 공유하는 환경을 제공하는 것까지 다양하게 망라되어 있다. 본 논문에서는 원격지의 협업 연구자간에 데이터를 공유하고 공유된 시각화를 제공하는 e-Science 협업 환경 기술에 대한 소개를 하고자 한다. 특히 Access Grid를 중심으로 한다양한 협업 환경의 구축 노력들을 소개하면서, 이들 노력을 바탕으로 한 향후의 협업 환경 기술의 발전 방향에 대해 소개한다.
Park, Hong-Jae;Bong, Sung-Woo;Yun, Suk-Woo;Kim, Young-Man
Annual Conference of KIPS
/
2008.05a
/
pp.793-795
/
2008
최근 유비쿼터스 컴퓨팅과 유비쿼터스 네트워크를 활용하여 새로운 서비스들을 개발하려는 노력이 진행 중이며, 이에 관련된 기술의 중요성도 급증하고 있다. 특히 감시정찰 센서네트워크의 핵심 구성요소인 저가의 경량 센서노드에서 측정한 미가공 데이터(raw data)를 사용하여 침입 물체의 실시간 탐지, 식별, 추적 및 예측하기 위한 디지털 신호처리 기술은 주요 기술 중 하나이다. 본 논문에서는 감시정찰 센서네트워크의 핵심 구성요소인 자기 센서노드에서 측정한 자기 미가공 데이터를 사용하여 사람과 차량을 탐지할 수 있는 자기 센서 디지털 신호처리 알고리즘을 설계한다. 알고리즘의 주 목표는 감시정찰용 센서노드의 탐지 신뢰성을 높이기 위한 높은 침입물체 탐지 성공률(success rate)과 낮은 허위신고(false alarm) 횟수를 가지는 것이다.
Research on corporate bankruptcy prediction has been focused on financial information. Since the company's financial information is updated quarterly, there is a problem that timeliness is insufficient in predicting the possibility of a company's business closure in real time. Evaluated companies that want to improve this need a method of judging the soundness of a company that uses information other than financial information to judge the soundness of a target company. To this end, as information technology has made it easier to collect non-financial information about companies, research has been conducted to apply additional variables and various methodologies other than financial information to predict corporate bankruptcy. It has become an important research task to determine whether it has an effect. In this study, we examined the impact of electronic payment-related information, which constitutes non-financial information, when predicting the closure of business operators using electronic payment service and examined the difference in closure prediction accuracy according to the combination of financial and non-financial information. Specifically, three research models consisting of a financial information model, a non-financial information model, and a combined model were designed, and the closure prediction accuracy was confirmed with six algorithms including the Multi Layer Perceptron (MLP) algorithm. The model combining financial and non-financial information showed the highest prediction accuracy, followed by the non-financial information model and the financial information model in order. As for the prediction accuracy of business closure by algorithm, XGBoost showed the highest prediction accuracy among the six algorithms. As a result of examining the relative importance of a total of 87 variables used to predict business closure, it was confirmed that more than 70% of the top 20 variables that had a significant impact on the prediction of business closure were non-financial information. Through this, it was confirmed that electronic payment-related information of non-financial information is an important variable in predicting business closure, and the possibility of using non-financial information as an alternative to financial information was also examined. Based on this study, the importance of collecting and utilizing non-financial information as information that can predict business closure is recognized, and a plan to utilize it for corporate decision-making is also proposed.
인터넷과 정보기술의 발전으로 최근 이러닝 시스템을 포함한 다양한 학습 시스템이 연구 발전되고 있다. 학습자의 관점에서는 학습의 형태 혹은 학습자의 학습 패턴등을 분석하여 지능적인 학습시스템으로 발전하고 있으며, 교수자의 관점에서는 교수학습 모델 연구와 학습 컨텐츠 계발 방법론 연구 등이 활발하게 이루어지고 있다. 본 논문에서는 지능형 튜터링 시스템을 위한 메타러닝 설계 연구를 제안하였다. 메타러닝은 학습자 자신이 어떤 특성을 가지고 어떻게 학습하는지에 대해 학습할 수 있는 방법을 설명한다. 동일한 학습내용을 같은 순서 혹은 같은 방법으로 학습하는 것은 서로 다른 학습자에게 동일한 학습 결과를 나타낼 수 없기 때문에 개인 맞춤형 학습 서비스 형태를 필요로 한다. 따라서 본 연구에서는 메타러닝 설계를 기반으로 지능형 튜터링 시스템을 개발 할 수 있는 방법을 설명하고자 한다. 향후 본 논문에 설계를 기반으로 지능형 튜터링 플랫폼을 표준으로 개발하여 국제적 표준의 ITS(Intelligent Tutoring System)로 발전되기를 기대한다.
슈퍼컴퓨터 시스템의 성능과 보유 용량이 증가함에 따라 전력소비, 전산실 냉각, 시스템 설치 공간, 유지비용 등의 여러 가지 문제가 대두되고 있다. 이러한 문제의 시작은 슈퍼컴퓨터의 성능증가에 따라 전력밀도가 증가하는 것과 관계가 있다. 그래서 제조사에서는 저전력 서버, 고효율 서버를 위하여 많은 노력을 기울이고 있다. 또한, 시스템 관리측면에서도 시스템 가상화, 통합화를 통하여 서버의 수를 줄여서 전력소비를 줄이는 방안도 나오고 있다. 본 논문에서는 24시간 365일 서비스를 하는 시스템을 위하여 시스템을 사용하지 않는 시간에는 전원을 끄고 작업이 시작되면 다시 서버에 전원을 공급하여 살리는 기능을 자동적으로 하는 전원자동관리 시스템(Automatic Power Management System, APMS)을 개발하였다. APMS를 이용하여 에너지 절감효과를 기술하였다.
최근 교육부는 초등학교부터 중학교까지 정보통신기술(ICT)와 인공지능(AI)에 관한 소양을 길러주기 위해 AI, VR 등 최첨단 기술을 적용한 '지능형 과학실'을 2024년까지 모든 학교에 구축할 방침이라고 한다. 하지만 국내 VR 교육은 학년별, 교과과정에 맞춘 콘텐츠가 부족하고, VR 교육 전용 LMS(학습관리 시스템)의 부재로 현실로 도입하기에 부족하다. 본 논문에서는 VR 교육 특성에 맞는 LMS 대안과 10분 내외의 VR 체험을 뒷받침할 맞춤 콘텐츠로서 'Web & VR Hybrid Content'를 제안한다.
Hyun-Su Yu;Seo-Yeon Nam;Joo-Yeong Baek;So-Yeong Ahn;Se-Jin Hwang;Gyu-Young Lee
Annual Conference of KIPS
/
2023.11a
/
pp.1092-1093
/
2023
본 논문에서는 한국무역협회(KITA)의 오픈상담 자료들을 바탕으로, 딥러닝 기술을 이용하여 구현한 해상물류 대화형 챗봇 ShipMate를 제안한다. 챗봇 ShipMate는 KoGPT2를 활용한 답변과 Doc2Vec 기반의 유사 상담사례 추천이 가능하고, 무역상담을 시간제약 없이 진행할 수 있기 때문에, 기존 해상물류 서비스의 접근성을 한층 더 높일 수 있으며 이를 실험을 통해 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.