• Title/Summary/Keyword: 과정-개념

Search Result 5,175, Processing Time 0.035 seconds

International Comparison Study on Essential Concepts of Science Curriculum: Focus on the United States, Canada, Australia and England (과학과 교육과정의 핵심 개념 국제 비교 -미국, 캐나다, 호주, 영국을 중심으로-)

  • Kim, Jihyeon;Chung, Are Jun
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.1
    • /
    • pp.215-223
    • /
    • 2017
  • This study aims to find an effective way to present essential science concepts in national science curriculum through international comparisons. Next Generation Science Standard (US), Ontario Science Curriculum (Canada), Australia Science Curriculum, and British/English Science Curriculum were selected for comparison. In science curriculum documents, these countries used terms such as 'Key ideas,' 'Big ideas,' 'Key concepts,' 'Disciplinary core ideas.' and 'Fundamental concepts' to present essential concepts of science. This study reviewed the characteristics of the meaning, the status, and the role of essential concepts country by country. The result shows essential concepts have been used with different meanings and statutes in each case. Furthermore, various roles were performed through essential concepts in order to organize their science curriculum. From these foreign nation's cases, this study proposes several ways to present essential science concepts based on results. First, interdisciplinary integrated concepts were needed to organize an integrated science curriculum. In science curriculum documents of the United States, Canada, Australia and England, two types of terms were used in order to structuralize an integrated science curriculum. Second, essential concepts should include concepts related with function and value as well as scientific knowledge. Third, essential concepts need to be presented in such a way as to show specific contexts. Therefore, selecting appropriate contents and structure are needed to be able to improve the way to present essential concepts in Korea's educational environment.

Study and International Comparison on the Meaning of 'Core Ideas' in Mathematics Curriculum (수학 교육과정의 '핵심 개념' 의미 고찰 및 국제 비교)

  • Lee, Hwa Young
    • School Mathematics
    • /
    • v.19 no.3
    • /
    • pp.495-511
    • /
    • 2017
  • The purpose of this study is to research the meaning of core ideas and to compare the core ideas in mathematics curriculum of each country. I derived that the core ideas were approached and presented in curriculums of South Korea, The United States, Canada, Australia, New Zealand, Singapore as several perspectives; the main domains of mathematics contents which should be taught; the basis of the core principles between of mathematical contents; the focuses for teaching and learning in school mathematics. Finally, I discussed the further research direction on the contents of core ideas and the methods of presenting it to teach meaningfully the core mathematical contents to students who will live in the future.

The Processes of Developing Mathematical Concepts Based on the Vygotsky′s Theory (함수의 그래프에서 학생의 개념 발달과정에 대한 특성)

  • 고호경
    • Journal of the Korean School Mathematics Society
    • /
    • v.6 no.1
    • /
    • pp.163-175
    • /
    • 2003
  • The research was aimed to find a special quality to the mathematical concept development using a graphing calculator in the collaborative learning. I could observe the process in which the students had formed the generalized and abstract mathematical concepts after they were given different concepts. I \ulcorner-Iso observed the characteristics of how they started with a vague syncretic conglomeration and approached to the complicated thoughts and genuine concepts. The advance of the collection type was achieved in the process of teacher's confirming of what the students had observed with a calculator. The language and the instrument were used in order for students to control the partial process. Also, they were given similar types of problems to make them clear when the students confronted 'the crisis of thoughts' at the level of pseudo-concept.

  • PDF

Development of a Tool for K-12 Science Curriculum Articulation (유아, 초등, 중등 과학교육과정의 연계성 분석을 위한 도구 개발)

  • Paik, Seoung-Hey;Kim, Hyo-Nam;Cho, Boo-kyung
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.2
    • /
    • pp.262-273
    • /
    • 2000
  • The purpose of this study was to develop a tool for K-12 science curriculum articulation analysis, especially the concept map of 'properties of matter' and the table of the key concepts of 'properties of matter' by grade. We have 5 steps for the purpose; to extract common subject of K-12 science curriculums, to analyze the contents of K-12 science curriculum related to the common subject, to develop and analyze concept maps of K-12 science curriculums, to develop common concept map and the table of key concepts by grade of K-12 science curriculum, and to modify and clear up the concept map and the table. First two steps are related to the develop of 'water' concept map, and the others are related to the 'properties of matter' concept map.

  • PDF

Comparison of the Science Curricula of Korea, the United States, England, and Singapore: Focus on the Concept of Energy (한국, 미국, 영국, 싱가포르의 과학 교육과정 비교 - 에너지 개념을 중심으로 -)

  • Yoon, Hye-Gyoung;Cheong, Yong Wook
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.5
    • /
    • pp.799-812
    • /
    • 2017
  • Energy as a powerful and unifying concept to understand natural world has been regarded as one of the key concepts of the science curricula in many countries. However, concerning learning and teaching of energy, various difficulties have been reported widely. This study aimed at analyzing and comparing science curricula of Korea, the U.S., England, and Singapore regarding energy to identify the potential issues for energy curriculum in the future. 2015 revised Korean science curriculum, Next Generation Science Standards of the U.S., Science programmes of study of England, and the Science syllabus of Singapore were compared based on six basic elements of the concept of energy: energy form, energy resource, energy transfer, energy transformation, energy conservation, and energy dissipation. Achievement criteria that include energy were extracted from all curricula and categorized into the six elements. The frequency and distribution of the six elements in the four curricula were compared in terms of school levels and disciplinary areas. Contents of six energy elements were also compared. Though all curricula emphasized energy as a key science concept, we found many differences in the degree of emphasis of basic ideas and specific contents and approaches. Korean curriculum is characterized by 1) high frequency concerning energy form among the elements of the concept of energy, 2) introducing energy forms of unclear meaning, which are not linked with other physical quantities, 3) emphasis on energy conversion in comparison of energy transfer, 4) focusing on mechanical energy conservation instead of more general energy conservation, and 5) absence of the concept of 'system' concerning energy. Issues for energy curriculum development were discussed.

An analysis of the processes of conceptual change through the successive refinement and articulation of student's conceptual framework - Focused on the university students' responses - (학생 개념의 연속적 세련화와 정교화를 통한 변화 과정 - 대학생 반응 분석 -)

  • Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.3
    • /
    • pp.276-285
    • /
    • 2003
  • In the earlier study, Park (2002) described the process of student' conceptual change as a successive refinement and articulation of their conceptual framework. In this study, the process of conceptual change for three university students were analyzed more in depth. As results, six types of conceptual change through successive refinement and articulation were observed: (1) original conception was elaborated in detail, (2) conception was differentiated according to the context, (3) some conceptions were re-explained theoretically after construction it based on experimental data, (4) non-coherent conceptions in the early stage get to have coherency in the later stage, (5) model of explanation gets to be complicated by excluding ideal conditions, (6) qualitative explanations were changed into quantitative ones.

Perceptions and Perspectives of Secondary Science Teachers on Core Concepts (핵심 개념에 대한 중등 과학 교사들의 인식 및 관점)

  • Eun-Jeong Yu
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.47-61
    • /
    • 2023
  • Rather than an abstract discourse, the purpose of this study is to outline the core concepts in the 2015 revised curriculum as a concrete teaching and learning method in the school context. We interviewed eight secondary science teachers and reported their perceptions and perspectives on core concepts using a backward design model based on the cyclical process of the platform, deliberation, and design for developing teaching and learning materials to understand core concepts. The participants perceived these core concepts differently, such as big ideas corresponding to the ultimate principle, minimum science concepts required for daily life, and primary and significant key concepts. In addition, this affects the association of teaching and learning. When core concepts are understood as transferable and expandable big ideas, there is a tendency to focus on the relationship between concepts and design project learning in a specific direction. However, if core concepts are identified as minimum science concepts at the level of science literacy, that can be recalled within the context of life, there is a tendency to emphasize on activities that make a meaningful difference to the lives of students with focus on case studies that are relevant to everyday life. Once core concepts are identified as key scientific content elements, such as basic or significant concepts, teachers recognize that it is essential to emphasize concept changes by correcting misconceptions, acquiring accurate scientific knowledge, and developing problem-solving items through paper-and-pencil evaluation. As the 2015 revised curriculum is finalized and the 2022 revised curriculum is scheduled for release, effective policy support is required to ensure that the curriculum is revised, which emphasizes the purpose of big ideas by naming core concepts as core ideas, to be stably implemented in schools.

Analysis of Science Educational Contents of Singapore, Canada and US Focused on the Integrated Concepts (통합개념을 중심으로 한 싱가포르, 캐나다와 미국의 과학교육과정 내용 요소 분석)

  • Lee, Yoonha;Yoon, Heojeong;Song, Joo-Yeon;Bang, Dami
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.1
    • /
    • pp.21-32
    • /
    • 2014
  • The feasibility of integrated concepts as a key element in designing integrated science curriculum has been investigated by analysing science contents included in performance expectations stated at different grades. The science curriculum of Singapore and the state of Ontario in Canada, and next generation of science standard (NGSS) were selected. Each of them presents theme, fundamental concepts, and crosscutting concepts, which has the characteristics of integrated concepts proposed in the study. Analysis showed that theme, fundamental concepts, and crosscutting concepts were influenced by the characteristics of each curriculum. In addition, science contents related to integrated concepts at different grades varied with the nature of integrated concepts. Based on results, some suggestions were made. First, the total number of integrated concepts should be considered for designing integrated curriculum. Second, the nature of integrated concepts and science contents associated with the integrated concepts should be considered. The integrated concepts should be vast and deep enough in the meaning to contain various content knowledge of different science domains. Third, it should be considered that how the integrated concepts have to be presented at different grades.

Mining Generalized Association Rules Using Fuzzy Concept Hierarchy (퍼지 개념 계층을 도입한 일반화된 연관 규칙 마이닝)

  • 손봉기;김동호;이건명
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.84-86
    • /
    • 2000
  • 연관 규칙 마이닝 과정에 참조되는 일반 개념 계층은 개념간의 명확한 관계만을 표현한다. 실제로는 개념 사이의 관계가 애매한 경우가 많다. 이 논문에서는 개념간의 애매한 관계까지 반영할 수 있는 퍼지 개념 계층을 이용하여 일반화된 연관 규칙을 마이닝하는 방법을 제안한다. 퍼지 개념 계층에서의 하위 개념을 상위 개념으로 적절하게 반영하는 방법과 마이닝된 연관 규칙에서 중복되는 규칙의 가지치기(pruning)에 사용되는 측도를 소개한다. 또한 퍼지 개념 계층을 이용한 일반화된 연관 규칙 마이닝 방법의 응용성을 보이기 위해 실험 과정과 결과를 보인다.

  • PDF

An Analysis on Understanding of Gifted Students in Elementary Mathematics about Situations and Concepts of Multiplication (초등수학영재의 곱셈 상황에 따른 개념 이해 분석)

  • Kim, Young A;Kim, Sung Joon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.2
    • /
    • pp.283-309
    • /
    • 2016
  • The purpose of this study is to investigate gifted students in elementary mathematics how they understand of situations involving multiplication and concepts of multiplication. For this purpose, first, this study analyzed the teacher's guidebooks about introducing the concept of multiplication in elementary school. Second, we analyzed multiplication problems that gifted students posed. Third, we interviewed gifted students to research how they understand the concepts of multiplication. The result of this study can be summarized as follows: First, the concept of multiplication was introduced by repeated addition and times idea in elementary school. Since the 2007 revised curriculum, it was introduced based on times idea. Second, gifted students mainly posed situations of repeated addition. Also many gifted students understand the multiplication as only repeated addition and have poor understanding about times idea and pairs set.