• Title/Summary/Keyword: 과산화지질

Search Result 872, Processing Time 0.028 seconds

Effect of Dietary Vitamin A on the Status of Antioxidants in Ethanol-Treated Rats (비타민 A 섭취가 에탄올을 급여한 흰쥐의 체내 항산화 영양소 상태에 미치는 영향)

  • 서정숙;양경미;최미정
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.6
    • /
    • pp.848-858
    • /
    • 1995
  • The present study was conducted to investigate the effect of dietary vitamin A on the antioxidant status in ethanol-treated rats. Weaning rats were fed a basal diet until they reached about 160-180g body weight. Thereafter, four experimental groups were fed a liquid diet containing 36% ethanol of total calorie and four pair-fed groups were fed isocaloric sucorse instead of ethanol. Additionally, the liquid diet contained adequate amount of ${\beta}-carotene$, retinyl acetate, or 13-cis-retinoic acid except vitamin A deficient diet. The rats were sacrificed after 7 weeks of feedng periods. Significant decrease in hepatic vitamin E content was found in rats treated with chronic ethanol. However, dietary supplementation of retinyl acetate modified the change to some extent. Total vitamin C content of liver increased in vitamin A-deficient or ${\beta}-carotene$ groups with ethanol feeding. The ratio of reduced/oxidized vitamin C increased in the plasma and liver of ${\beta}-carotene$ group with ethanol feeding. Chronic ethanol intake did not change the total glutathione content of rat liver, but increased reduced glutathione(GSH)/oxidized glutathione(GSSG) ratio. This increase in hepatic GSH after chronic ethanol treatment. The changes of Se content in plasma and liver was not consistant. Fe content of liver increased by ethanol treatment, but this increase reduced in rats fed dietary retinyl acetate or 13-cis-retinoic acid. Fe content of plasma increased in vitamin A-deficient and ${\beta}-carotene$ supplemented groups with ethanol intake.

  • PDF

7-Ketocholesterol Induces Vascular Smooth Muscle Cell Apoptosis via Akt Degradation (7-Ketocholesterol에 의한 Akt 감소와 혈관평활근세포의 세포자멸사)

  • Seo, Kyo Won;Kim, Chi Dae;Lee, Won Suk
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.226-233
    • /
    • 2016
  • Vascular smooth muscle cell (VSMC) apoptosis has been identified in various vascular diseases, including atherosclerosis and restenosis after angioplasty, and has been known to precipitate atherosclerotic plaque instability and rupture. Oxysterols are known as inducers of apoptosis in VSMC, and 7-ketocholesterol (7KC) is the major nonenzymically formed oxysterol in atherosclerotic lesions. The precise mechanism underlying VSMC apoptosis is still poorly understood. In this study, we investigated whether 7KC causes apoptosis, and characterized its apoptotic mechanisms in primary cultured rat aortic VSMC. Cell viability was assessed by MTT assay and trypan blue assay. Apoptosis was assessed by flow cytometry, immunofluorescence, immunoprecipitation, and Western blot analyses. 7KC markedly decreased the VSMC viability in a time- and concentration-dependent manner, and increased the production of 4-hydroxynonenal (HNE), a major end-product of lipid peroxidation, which also decreased the VSMC viability. Pretreatment with 2,4-dinitrophenylhydrazine, a well-known reagent of lipid peroxidation-derived aldehydes, significantly restored the 7KC-decreased viability of VSMC. Furthermore, HNE, as well as 7KC, reduced the level of total Akt, a major mediator of cell survival. The 7KC-decreased level of total Akt was significantly restored by pretreatments with 2,4-dinitrophenylhydrazine and N-acetylcysteine. Lactacystin, a proteasome inhibitor, protected VSMC against apoptosis and Akt degradation, but did not inhibit HNE production. In the immunoprecipitation assay, 7KC increased HNE-modified Akt. From the results, it seems that, in atherosclerotic lesions, 7KC induces HNE production in VSMC, and this HNE binds to Akt, proceeding to proteasomal degradation of Akt, through which mechanism the atherosclerotic plaque instability may be facilitated.

Cellular Protective Effects of Peanut Sprout Root Extracts (땅콩나물 뿌리 추출물의 세포 보호 효과)

  • Jo, Na Rae;Park, Chan Il;Park, Chae Won;Shin, Dong Han;Hwang, Yoon Chan;Kim, Yong Hyun;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.183-189
    • /
    • 2012
  • In this study, the cellular protective effect and antioxidative property of peanut sprout root extracts were investigated. Cellular protective effects of peanut sprout root extracts on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The ethyl acetate fraction of extracts exhibited a cellular protective effect in a concentration dependent manner. Particularly, the aglycone fraction of extracts showed prominent cellular protective effects in a concentration range (5~50 ${\mu}g/mL$). They are more effective than that of (+)-${\alpha}$-tocopherol, known as a lipid peroxidation chain blocker. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of peanut sprout root extracts on ROS generated in $Fe^{3+}$-EDTA/$H_2O_2$ system were investigated using the luminol-dependent chemiluminescence assay. The ethyl acetate fraction of extracts ($OSC_{50}$; 1.59 ${\mu}g/mL$) showed a similar ROS scavenging activity compare with that of L-ascorbic acid (1.50 ${\mu}g/mL$), known as a strong antioxidant. On the other hand, the order of free radical (1,1-diphenyl-2-picrylhydraxyl, DPPH) scavenging activity ($FSC_{50}$) was (+)-${\alpha}$-tocopherol > 80% MeOH extract > aglycone fraction > ethyl acetate fraction. These results indicate that peanut sprout root extracts can function as an antioxidant in biological systems, particularly skin exposed to solar UV radiation by scavenging $^1O_2$ and other ROS, and to protect cellular membranes against ROS.

Ameliorating effect of the ethyl acetate fraction of Pteridium aquilinum on glucose-induced neuronal apoptosis (포도당으로 유도된 신경세포 손상에 대한 고사리 아세트산에틸 분획물의 개선 효과)

  • Park, Seon Kyeong;Guo, Tian Jiao;Kim, Jong Min;Kang, Jin Yong;Park, Sang Hyun;Kang, Jeong Eun;Kwon, Bong Seok;Lee, Chang Jun;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.430-437
    • /
    • 2017
  • The protective effect of Pteridium aquilinum on high glucose-induced cytotoxicity was examined in vitro to investigate the relationship between diabetic condition and neuronal dysfunction. The ethyl acetate fraction of P. aquilinum (EFPA), with total phenolic content of 265.08 mg gallic acid equivalent/g, showed higher 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)/2,2-diphenyl-1-picrylhydrazyl radical scavenging activities and lipid peroxidation inhibitory effect than any other fraction. In addition, EFPA showed a significant reduction in the inhibitory effect on ${\alpha}$-glucosidase activity ($IC_{50}$ value=$205.26{\mu}g/mL$) compared to the acarbose positive control. The anti-oxidative effect in PC12 cells, protective effects on high glucose-induced oxidative stress in neuronal cells, and neurotoxicity were measured using 2',7'-dichlorofluorescin diacetate, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide, and lactate dehydrogenase assays, respectively. EFPA showed conspicuous inhibitory effect on cellular reactive oxygen species production and neuronal cell apoptosis. Finally, kaempferol-3-glucoside was identified as the main phenolic compound of EFPA using high performance liquid chromatography.

Effects of Vitamin C on Residual Aflatoxin $B_1$ in Rat Sera Treated with Radiation and Aflatoxin $B_1$ (Vitamin C가 방사선과 Aflatoxin $B_1$을 투여한 흰쥐의 혈청 중 Aflatoxin $B_1$ 잔류량에 미치는 영향)

  • Chung, Do-Young;Kim, Han-Soo;Kang, Jin-Soon
    • Food Science and Preservation
    • /
    • v.18 no.3
    • /
    • pp.374-382
    • /
    • 2011
  • Aflatoxin ($AFB_1$) is a potent hepatotoxic and hepatocarcinogenic mycotoxin in humans. It is also well-known to be accumulated in animal tissues via various metabolic pathways. This study was conducted to determine the effects of vitamin C on the residual $AFB_1$ in rat sera that were treated with radiation and $AFB_1$. Six week-old male Sprague-Dawley rats were randomly divided into five groups: a control group, $AFB_1$-treated group, the group treated with $AFB_1$ and vitamin C, the group treated with X-ray and AFB1, and the group treated with X-ray and $AFB_1$ with vitamin C. On the first day of the experiment, only one dose of X-rays was exposed to the entire liver at 1,500 cGy. Next, vitamin C was injected at 10 mg/kg body weight via intraperitoneal injection, followed 1 hr later by the administration of 0.4 mg/kg of $AFB_1$ via intraperitoneal injection. These treatments were then administered every three days over a period of 15 days. On the 16th day of treatments, the animals were sacrificed. The contents of $AFB_1$ in rat sera were determined via indirect competitive ELISA and HPLC method. In the quantitative analysis of $AFB_1$ in rat sera via ELISA, $5.17{\pm}0.34$ ng/mL of $AFB_1$ was detected in the $AFB_1$-treated groups, but the amount more significantly decreased to $3.23{\pm}0.76$ ng/mL in the groups treated with $AFB_1$ and vitamin C (p<0.01) than in the $AFB_1$-treated groups. The $AFB_1$ contents of the rat sera of the groups treated with X-ray and $AFB_1$ did not significantly decreased with the administration of vitamin C. The $AFB_1$ content of the rat sera that was analyzed via HPLC showed a tendency similar to that of the content that was analyzed via ELISA. With regard to these data, vitamin C was very effective in reducing $AFB_1$ residue in rat sera.

Relationship between Stratum Corneum Carbonylated Protein (SCCP) and Skin Biophysical Parameters (Stratum Corneum Carbonylated Protein (SCCP)의 피부 생물학적 파라미터와의 관계)

  • Lee, Yongjik;Nam, Gaewon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • Carbonylated proteins (CPs) are synthesized by the chemical reaction of basic amino acid residues in proteins with aldehyde compounds yielded by lipid peroxidation. CPs are excited by a range of light from UVA to blue light, and resulted in the generation of superoxide anion radicals ($^{\cdot}O_2{^-}$) by photosensitizing reaction. Then, they CPs induce new protein carbonylation in stratum corneum through ROS generation. Furthermore, the superoxide anion radicals produce CPs in the stratum corneum (SC) through lipid peroxidation and finally affects skin conditions including color and moisture functions. The purpose of this study was to investigate the relationship between the production of stratum corneum carbonylated protein (SCCP) and the skin elasticity. 46 healthy female Koream at the ages of 30 ~ 50 years old were participated in this study for 8 weeks. The skin test was experiment conducted into two groups; placebo group (N = 23) used cream that did not contain active ingredients, and the other group (N = 23) used cream containing the elasticity improving ingredients. Test areas were the crow 's feet and the cheek. Various non-invasive methods were carried out to measure biophysical parameters on human skin indicating that dermis density and skin wrinkle were measured by using DUB scanner and Primos premium, respectively. Skin elasticity were measured using dermal torque meter (DTM310) and balistometer (BLS780). SCCP was assessed in a simple and non-invasive method using skin surface biopsy on the cheek of the subject. The amount of SCCP was determined using image analysis. All measurements were taken at 0, 4 and 8 8week. Results revealed that the amount of CP in SC was reduced when the skin wrinkle and skin elasticity related parameters were improved. This indicates that the correlation between the elasticity improvement and the amount of CP can be used as a anti-aging indicator and applicable to the skin clinical test for the measurement of skin aging in the future.

Protective Effect of the Ethyl Acetate-fraction of Methanol Extract of Ophiophogon japonicus on Amyloid beta Peptide-induced Cytotoxicity in PC12 Cells (소엽맥문동-에틸아세테이트 분획물의 아밀로이드 베타단백질-유발 세포독성에 대한 억제 효능)

  • Moon, Ja-Young;Kim, Eun-Sook;Choi, Soo-Jin;Kim, Jin-Ik;Choi, Nack-Shik;Lee, Kyoung;Park, Woo-Jin;Choi, Young-Whan
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.173-180
    • /
    • 2019
  • Amyloid ${\beta}$-protein ($A{\beta}$) is the principal component of senile plaques characteristic of Alzheimer's disease (AD) and elicits a toxic effect on neurons in vitro and in vivo. Many environmental factors, including antioxidants and proteoglycans, modify $A{\beta}$ toxicity. It is worthwhile to isolate novel natural compounds that could prove therapeutic for patients with AD without causing detrimental side effects. In this study, we investigated the in vitro neuroprotective effects of the ethyl acetate fraction of methanol extract of Ophiophogon japonicas (OJEA fraction). We used an MTT reduction assay to detect protective effects of the OJEA fraction on $A{\beta}_{25-35}$-induced cytotoxicity to PC12 cells. We also used a cell-based ${\beta}$-secretase assay system to investigate the inhibitory effect of the OJEA fraction on ${\beta}$-secretase activity. In addition, we performed an in vitro lipid peroxidation assay to evaluate the protective effect of the OJEA fraction against oxidative stress induced by $A{\beta}_{25-35}$ in PC12 cells. The OJEA fraction had strong protective effects against $A{\beta}_{25-35}$-induced cytotoxicity to PC12 cells and was strongly inhibitory to ${\beta}$-secretase activity, which resulted in the attenuation of $A{\beta}$ generation. In addition, the OJEA fraction significantly decreased malondialdehyde (MDA) content, which is induced by the exposure of PC12 cells to $A{\beta}_{25-35}$. Our results suggested that the OJEA fraction contained active compounds exhibiting a neuroprotective effect on $A{\beta}$ toxicity.

Antioxidative Activity of A. victorialis var. platyphyllum Extracts (산마늘 추출물의 항산화활성)

  • Chang, Jun Pok;Doh, Eun Soo;Kil, Ki Jung;Yang, Jae Kyung;Yun, Chung Weon;Lee, Gun Hee;Jung, Yun Hae;Ji, Yoon Sun;Kim, Bo Ram;Choi, Myung Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.408-416
    • /
    • 2011
  • Leaf and bulb of wild garlic (Allium victorials var. platyphyllum) from Ulleung Island and Gangneung region were extracted with water and 70% ethanol and investigated on its antioxidative activity. Total polyphenol content of Ulleung island wild garlic was higher than that of Gangneung region. Total polyphenol content in bulb was high compared to content of the leaves, and 70% ethanol extract of Ulleung Island leaf was high in 72.50 mg/g. Flavonoid content in leaf was higher than that of bulb, 70% ethanol extract of Ulleung Island leaf was high in 73.30 mg/g. Electron donating activity of 70% ethanol extract from Ulleung island and water extracts (55.13%) from Gangneung were higher than those of other extracts. Bulb extracts on electron donating activity were higher than those of the leaf extracts. SOD like activity of extracts was high in 70% ethanol extract of wild gallic leaf cultivated at Gangneung. Hydroxy radical scavenging activity of wild gallic was high in leaf extracts compared to activity of bulb extracts. Hydroxy radical scavenging activity (58.85%) of Ulleung island wild gallic leaf extracts was higher than that of the wild gallic leaves of Gangneung. Lipid peroxidation inhibitory activity was both high in water and 70% ethanol leaf extracts of Ulleung island and Gangneung region, especially, 70% ethanol extract of leaves from Ulleung island was the highest 73.33%. These results suggest that extracts from wild garlic could be used as an antioxidative functional food source.

Post-Hatching Development of Digestive Organs, Intestinal Digestive Enzymes and Hepatic Antioxidant Defense System in White Leghorn Chicks (White Leghorn Chick의 초기 성장단계에서 소화기관의 발달, 소장의 소화 효소 및 간 조직의 항산화 방어작용)

  • Kim, Min-Jeong;Lee, Joo-Hyun;Jang, In-Surk
    • Korean Journal of Poultry Science
    • /
    • v.48 no.1
    • /
    • pp.31-39
    • /
    • 2021
  • We aimed to investigate the age-dependent development of digestive organs, intestinal enzymes, and hepatic antioxidant defense system in White Leghorn chicks aged 0, 3, 7, 14, and 21 days. Body weight (BW) did not significantly change between days 0 and 7 but significantly increased (P<0.05) after day 7. The relative liver weight (g/100 g of BW) was significantly lower at day 0 than at the other ages but markedly increased at days 3 and 7 (P<0.05). The relative pancreatic weight changed similar to the change in liver weight, with the maximum development at 7 days (P<0.05). The relative intestinal and mucosal tissue weights increased rapidly after hatching (P<0.05), with the maximum growth at 7 days. Furthermore, maltase and sucrase activities were significantly higher at day 3 than at day 0 (P<0.05). Leucine aminopeptidase activity was high at day 0 and remained constant as age increased. Superoxide dismutase and glutathione S-transferase activities in the liver were the lowest at day 0 but significantly increased after 7 days (P<0.05). Glutathione peroxidase activity increased significantly after day 14 compared with that at days 0 and 7 (P<0.05). Lipid peroxidation was not affected by age. In conclusion, the digestive organ weights and hydrolase activity of chicks increased rapidly during the first 3 or 7 days post-hatching. Hepatic antioxidant enzyme activity increased simultaneously with the increase in digestive organ weights, after 7 days.

Early Development of Digestive Organs, Intestinal Microvilli Digestive Enzymes, and Hepatic Antioxidant Enzymes after Hatching in Korean Native Chicks (한국 재래계에서 초기 성장에 따른 소화기관 발달, 소장 미세융모의 소화 효소 및 간조직의 항산화 효소 발현)

  • Geun-Hui Nam;Young-Bin Lee;Sea-Hwan Sohn;In-Surk Jang
    • Korean Journal of Poultry Science
    • /
    • v.51 no.2
    • /
    • pp.107-116
    • /
    • 2024
  • The study was conducted to examine age-related development of digestive organs, intestinal microvilli hydrolase, and hepatic antioxidant enzyme in Korean native chicks (KNC) aged from 0-d to 28-d of post-hatching. Body weight did not significantly increase from 0-d to 3-d-old, but after that remarkably increased from 3-d to 28-d-old (P<0.05). The relative weight (g/100 g of BW) of the proventriculus, gizzard, and liver was significantly higher at 3- and 7-d-old chicks than that of the other ages. The relative weight of the intestine, mucosal tissues, and pancreas was markedly developed at the ages of 3-, 14-, and (or) 21-d-old chicks (P<0.05). In the small intestine, the specific activities of maltase and sucrose were significantly higher at 14-d-old compared with the other ages (P<0.05). Leucine aminopeptidase activity showed a constant level from 0- to 28-d-old without significance. The specific activity of alkaline phosphatase was significantly higher at 0-d-old compared with the other ages (P<0.05). In the liver, the specific activities of superoxide dismutase, glutathione peroxidase, and glutathione S-transferase were shown to be lowest at 0-d-old, but they continued to increase as the age increased. The lipid peroxidation was significantly high at the age of 21-d (P<0.05), after that its level decreased at 28-d old. In conclusion, the KNC rapidly developed digestive organs and intestinal microvilli hydrolase activity from 3- to 14-d-old after hatching. Hepatic antioxidant enzyme activity continued to increase as the age increased after hatching, resulting in 28-d-old chicks showing the highest antioxidant enzyme activity in the KNC.