• Title/Summary/Keyword: 공학에 대한 태도

Search Result 821, Processing Time 0.023 seconds

Slopes Risk Assessment Techniques through Pattern Classification (패턴분류를 통한 산지사면의 위험도 평가 기법)

  • Kim, Min-Seub;Kim, Jin-Young
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.189-199
    • /
    • 2015
  • Our country's leading granite weathered soil of the ground slope failures that occur in cutting slope most cases, it does not require in-depth to the shear strength most of the surface layer is affected by weathering (1~2 m) at a shallow depth close to the ground, it is important to identify the reliability. Based on the result obtained in actual field investigation, the field slope type was classified by each type of wedge slope, Infinite slope, finite slope -I and finite slope -II, and the slope stability was examined respectively. In addition, using the numerical analysis results, the relationship between the slope inclination angle and safety factor was analyzed and it tried to offer basic data to which the stability in the field slope was able to be estimated by analyzing the safety factor change of the slope according to the slope type. In this study, classified into four types of natural slope, safety factor estimation method by slope types is proposed through the numerical analysis. However, some limit exists in generalizing in this research because it does not test various case studies. Therefore, the case study of a wide range of various sypes to assess the safety of various types slope can be made, accommodate a wide range of field conditions reasonable risk evaluation criteria may be derived.

Oxidation of Phenol Using Ozone-containing Microbubbles Formed by Electrostatic Spray (전기장에 의해 생성된 미세기포를 이용한 페놀의 오존산화)

  • Shin, Won-Tae;Jung, Yoo-Jin;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1292-1297
    • /
    • 2005
  • The use of ozone in water and wastewater treatment systems has been known to be a process that is limited by mass transfer. The most effective way to overcome this limitation is to increase the interfacial area available for mass transfer by decreasing the size of the ozone gas bubbles that are dispersed in solution. Electrostatic spraying(ES) of ozone into water was investigated in this work as a method of increasing the rate of mass transfer of ozone into a solution and thereby increasing the rate of phenol oxidation. Results were obtained for ES at input power levels ranging from 0 to 4 kV and compared with two different pore-size bubble diffusers($10{\sim}15{\mu}m$ and $40{\sim}60{\mu}m$). It was determined that the rate of mass transfer could be increased by as much as 40% when the applied voltage was increased from 0 to 4 kV as a result of the smaller bubbles generated by ES. In addition, ES was shown to be more effective than the medium-pore-size($10{\sim}15{\mu}m$) bubble diffuser and the best results were achieved at low gas flow rates.

Investigation and Evaluation of Algae Removal Technologies Applied in Domestic Rivers and Lakes (국내 하천/호수에 적용된 조류저감기술의 조사 및 평가)

  • Byeon, Kyu Deok;Kim, Ga Young;Lee, Inju;Lee, Saeromi;Park, Jaeroh;Hwang, Taemun;Joo, Jin Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.387-394
    • /
    • 2016
  • Commercial 28 algae removal technologies that have been applied in domestic rivers and lakes with green tide were investigated, analyzed and classified. The classification of algae removal technologies was based on the three criteria (i.e., principle, flow rate of water body, and application period). Also, algae removal technologies were evaluated in terms of cost effectiveness, field applicability, effect durability, and eco friendliness. From the analysis results, technologies using physical, chemical, biological, and convergent controls were 32.2%, 25%, 21.4%, and 21.4%, respectively. The 75% of technologies have been applied to stagnant water body (${\leq}0.2m/s$). Also, algae harvesting ship with dissolved air flotation, conveyor belt and filtration processes and natural floating coagulant were found to have better field applicability, compared to other technologies. However, proper algae removal technology in specific rivers and lakes should be chosen after the evaluation of long-term pilot scale field test. Also, development of energy and resource recovery technologies from algae biomass is warranted.

STUDIES ON FREEZING OF YELLOW SEA BREAM 1. Effects of Freezing and Storing Temperature and Chemicals on the Quality of Yellow Sea Bream (옥돔의 동결에 관한 연구 1. 동결저장온도와 약품처리가 품질에 미치는 영향)

  • SONG Dae-Jin;HUR Jong-Wha;KANG Young-Joo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.4
    • /
    • pp.221-226
    • /
    • 1977
  • The quality changes of yellow sea bream, Branchiostegus japonicus japonicus, during frozen storage were mentioned from the view point of commercial value. The experiments were conducted to find out the effective storing method by varying the storage temperatures $(-5^{\circ}C,\;-35^{\circ}C)$ and pretreatment with chemicals $(0.l\%\;BHA,\;1\%\;sodium\;Polyphosphate)$. The samples were stored for 6 months at $-5^{\circ}C$ and $-35^{\circ}C$ after dipping in the chemical solutions and packing with polyethylens film. The extractibility of salt soluble protein of sample stored at $-35^{\circ}C$ was higher than that of samples stored at $-5^{\circ}C$, while the chemical treatments were not so much effective. Difference in the amount of free water released from samples was obvious between $-5^{\circ}C$ and $-35^{\circ}C$ storage, and that of samples treated with sodium Polyphosphate was much less than the BHA-treated ones. VBN content was differed by varying the storage temperature whereas no effect by the chemical treatments. TBA value of the sample storage at $-35^{\circ}C$ was lower than $-5^{\circ}C$ and the effect of chemicals on the development of oxidation was in order of sodium polyphosphate, BHA and control. Carotenoid content also changed by varying the storage temperature and the color was completely faded out with quality deterioration after 3 months storage at $-5^{\circ}C$.

  • PDF

Removal Characteristics of Organic Matters in Pretreatment and Reverse Osmosis Membrane Processes for Seawater Desalination (해수담수화 전처리 및 역삼투막여과 공정의 유기물 제거특성)

  • Kim, Dong-Kwan;Choi, June-Seok;Lee, Chang-Kyu;Kim, Jinho;Choi, Jeong-Hak;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.492-497
    • /
    • 2014
  • This study investigated removal characteristics of organic matters in pretreatment and reverse osmosis (RO) membrane processes for seawater desalination. Also, the influence of the changes in characteristics of organic matters on the membrane fouling was assessed. The pretreatment processes included dual media filtration (DMF), pressurized membrane filtration (MF), and submerged membrane filtration (SMF). Turbidity, UV absorption at 254 nm, dissolved organic carbon, size exclusion chromatography (SEC), fluorescence excitation emission matrix (FEEM), and transparent exopolymer particles (TEP) in raw and processed waters were analyzed. Ions and minerals were not removed by any pretreatment process tested, but were removed over 99% through the RO membrane process. Hydrophobic organics, which can play major role in organic membrane fouling, were relatively readily removed compared with hydrophilic ones. Membrane based pretreatment such as MF and SMF exhibited better removals of organics than conventional DMF. As the levels of organics in pretreated water decreased, the silt density index (SDI) decreased. MF treated water exhibited the lowest SDI value; this is possibly due to the lowest TEP ($0.1-0.4{\mu}m$) concentrations.

Optimization of Synthesis Condition for Nanoscale Zero Valent Iron Immobilization on Granular Activated Carbon (영가철이 고정된 입상활성탄 제조를 위한 최적 합성조건 도출)

  • Hwang, Yuhoon;Mines, Paul D.;Lee, Wontae;Andersen, Henrik R.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.521-527
    • /
    • 2016
  • Nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, however, the nano size should be of concern when nZVI is considered for water treatment, due to difficulties in recovery. The loss of nZVI causes not only economical loss, but also potential risk to human health and environment. Thus, the immobilization onto coarse or structured support is essential. In this study, two representative processes for nZVI immobilization on granular activated carbon (GAC) were evaluated, and optimized conditions for synthesizing Fe/GAC composite were suggested. Both total iron content and $Fe_0$ content can be significantly affected by preparation processes, therefore, it was important to avoid oxidation during preparation to achieve higher reduction capacity. Synthesis conditions such as reduction time and existence of intermediate drying step were investigated to improve $Fe_0$ content of Fe/GAC composites. The optimal condition was two hours of $NaBH_4$ reduction without intermediate drying process. The prepared Fe/GAC composite showed synergistic effect of the adsorption capability of the GAC and the degradation capability of the nZVI, which make this composite a very effective material for environmental remediation.

Removal of Dissolved Organic Nitrogen from Surface Water and Reclaimed Water by Coagulation (지표수 및 재이용수내 용존 유기질소의 응집처리)

  • Lee, Wontae;Choi, June-Seok;Oh, Hyun Je
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.729-734
    • /
    • 2012
  • During chlorination processes dissolved organic nitrogen (DON) can form toxic nitrogenous disinfection byproducts and organic chloramines which have little or no bactericidal activity. DON needs to be removed before chlorination processes to reduce the formation of those products. This study investigated the removal of DON from surface water and reclaimed water by coagulation with aluminum sulfate (alum) and a cationic polymer (polyDADMAC). Removal characteristics of dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm ($UVA_{254}$) were compared with that of DON. Coagulation with alum removed DON, DOC, and $UVA_{254}$ with similar trends, but the removal of $UVA_{254}$ was highest. A dual coagulation strategy of alum and cationic polymer improved the removal of DON. Coagulation with cationic polymer alone was not effective due to its narrow range of charge neutralization. DON in reclaimed water was easier to remove than that in surface water, and higher molecular weight fraction (>10,000 Da) of DON was preferentially removed.

Evaluation of a Ground Heat Exchanger Appropriate for the Site of the Third Stage Construction of Incheon International Airport (인천국제공항 3단계 건설부지에 적합한 지중열교환기 시스템 평가 연구)

  • Cho, Nam-Hyun;Song, Jung-Tae;Yoon, Seok;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.23-33
    • /
    • 2015
  • In the present study, a ground heat exchanger was installed for each heat source in the system at the site to evaluate ground heat conductivity, constructability, and economic feasibility; the factors considered in the study included ground heat, groundwater, fillers (such as bentonite and pea pebbles) and the shape of the heat exchange pipe (e.g., U and D-U). The aim was to determine the ground heat exchanger appropriate for the geothermal system in the 3rd-phase construction of Incheon International Airport. A comparative cost analysis of the initial costs based on the above information showed that although the initial costs of the regular vertical closed loop-II and modified vertical closed loop were lower than those of the regular vertical closed loop-I, they could not be expected to deliver high economic efficiency from the viewpoint of constructability (filler injection, heat exchange pipe insertion). The initial costs proved to be higher in the case of Geohil.

Robust Face Recognition based on 2D PCA Face Distinctive Identity Feature Subspace Model (2차원 PCA 얼굴 고유 식별 특성 부분공간 모델 기반 강인한 얼굴 인식)

  • Seol, Tae-In;Chung, Sun-Tae;Kim, Sang-Hoon;Chung, Un-Dong;Cho, Seong-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.35-43
    • /
    • 2010
  • 1D PCA utilized in the face appearance-based face recognition methods such as eigenface-based face recognition method may lead to less face representative power and more computational cost due to the resulting 1D face appearance data vector of high dimensionality. To resolve such problems of 1D PCA, 2D PCA-based face recognition methods had been developed. However, the face representation model obtained by direct application of 2D PCA to a face image set includes both face common features and face distinctive identity features. Face common features not only prevent face recognizability but also cause more computational cost. In this paper, we first develope a model of a face distinctive identity feature subspace separated from the effects of face common features in the face feature space obtained by application of 2D PCA analysis. Then, a novel robust face recognition based on the face distinctive identity feature subspace model is proposed. The proposed face recognition method based on the face distinctive identity feature subspace shows better performance than the conventional PCA-based methods (1D PCA-based one and 2D PCA-based one) with respect to recognition rate and processing time since it depends only on the face distinctive identity features. This is verified through various experiments using Yale A and IMM face database consisting of face images with various face poses under various illumination conditions.

A Real-time Motion Object Detection based on Neighbor Foreground Pixel Propagation Algorithm (주변 전경 픽셀 전파 알고리즘 기반 실시간 이동 객체 검출)

  • Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • Moving object detection is to detect foreground object different from background scene in a new incoming image frame and is an essential ingredient process in some image processing applications such as intelligent visual surveillance, HCI, object-based video compression and etc. Most of previous object detection algorithms are still computationally heavy so that it is difficult to develop real-time multi-channel moving object detection in a workstation or even one-channel real-time moving object detection in an embedded system using them. Foreground mask correction necessary for a more precise object detection is usually accomplished using morphological operations like opening and closing. Morphological operations are not computationally cheap and moreover, they are difficult to be rendered to run simultaneously with the subsequent connected component labeling routine since they need quite different type of processing from what the connected component labeling does. In this paper, we first devise a fast and precise foreground mask correction algorithm, "Neighbor Foreground Pixel Propagation (NFPP)" which utilizes neighbor pixel checking employed in the connected component labeling. Next, we propose a novel moving object detection method based on the devised foreground mask correction algorithm, NFPP where the connected component labeling routine can be executed simultaneously with the foreground mask correction. Through experiments, it is verified that the proposed moving object detection method shows more precise object detection and more than 4 times faster processing speed for a image frame and videos in the given the experiments than the previous moving object detection method using morphological operations.