• Title/Summary/Keyword: 공초점현미경

Search Result 184, Processing Time 0.033 seconds

Mixing Efficiency Evaluation in Y-channel Micromixer Using LIF Confocal Microscope (LIF 공초점 현미경을 이용한 Y-채널 마이크로믹서의 혼합 효율 평가)

  • Kim, Kyoung-Mok;Shin, Yong-Su;Ahn, Yoo-Min;Lee, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.159-166
    • /
    • 2007
  • Mixing between two or more reagents is one of important processes in biochemical microfluidics. In efficient micromixer design, it is essential to analyze flow pattern and evaluate mixing efficiency with good precision. In this work, mixing efficiency for Y-channel micromixer is measured by fluorescence intensity using LIF(Laser Induced Fluorescence) Confocal Microscope. The Y-channel micromixers are fabricated with polydimethylsiloxane(PDMS) and those are bonded to glass plate through Plasma bonding. Nile Blue A is injected into the micromixer as a fluorescence dye for measuring of fluorescence intensity by He/Ne laser. For visualization of the flow pattern, dynamic image capturing is carried out using CAM scope. For the comparison with computer simulation, modified SIMPLE algorithm for incompressible flow equation is solved for the same geometry as in the experiment. Throughout the experiments and computer simulation, accurate mixing efficiency evaluation process for a PDMS Y-channel micromixer is established.

Characterization of Fracture Roughness in Coarse.medium.fine Grained Granite (암반 불연속면의 거칠기 특성 - 조.중.세립질 화강암을 중심으로 -)

  • 김종태;정교철;김만일;송재용;박창근
    • The Journal of Engineering Geology
    • /
    • v.14 no.2
    • /
    • pp.147-168
    • /
    • 2004
  • Purpose of this study is to quantitatively characterize the fracture roughness which was measured with a confocal laser scanning microscope. The roughness discrete data measured by confocal laser microscope were analyzed by spectral analysis and fast Fourier transform (FFT).The roughness data by used noise reduction filter were applied for fractal analysis to describe roughness features quantitatively. Artificial fractures created by Brazilian test on granites were used to measure fracture roughness under the confocal laser scanning microscope. Measurements were performed along three scan lines on each fracture surface. 36 scan lines were determined on 12 specimens in total. Features of roughness showed that coarse and medium grained granites tend to more rough features than those of fine grained granites. Continuous analog data of roughness is possible to described as discrete data of measure roughness with a fixed interval under the confocal laser microscope. Results of FFT with the measured data showed the highest values on the second harmonics. Distribution of average amplitude of second harmonics was observed 0.9853 in coarse grained granite, 1.0792 in medium grained granite and 0.6794 in fine grained granite. This indicates that the larger roughness has the higher energy of harmonics as the result of fractal analysis in low frequency zone.

Fabrication and studies on the properties of a spinning-disk confocal microscope (회전원판식 공초점 현미경의 구성과 광학특성)

  • 신은성;남기봉
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.255-259
    • /
    • 1997
  • In this paper, the result of a performance study on a home-built spinning disk type confocal microscope is presented. The confocal microscope was fabricated with a Nipkow disk made of the made of the microfilm. The throughput of the disk was 0.5%, allowing the observation of specimen with higher reflectivities only. A laser diode at 692.7nm was used as the light source. The topographic structures of a PC ROM and the CD ROM were observed with sufficient reliability, while the effect of the convolution of the beam size with the finite object size was found dominant. Also the shadowing effect by the etched pattern was observed.

  • PDF

Flow Visualization in Microchannel Using Confocal Scanning Microscope (공초점 주사현미경을 통한 미세 유로에서의 유동 가시화)

  • Chang Jun Keun;Park Sung-Jin;Kim Jung Kyung;Han Dong Chul
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.1
    • /
    • pp.28-33
    • /
    • 2003
  • This paper presents the visualization method in which 3-dimensional(3D) microchannel flow can be detected using a confocal scanning microscope. By soft-lithography, we fabricated various Bio-MEMS(Micro Electro-Mechanical System) devices such as a disposable microchip for a flow cytometer and a micro-mixer, which have 3D structures. Injecting aqueous fluorescent solution in the microfluidic devices, we measured the flow in a steady state by the confocal scanning microscope. At first, we explain the principle of the confocal scanning microscope. And then we show the results from 3D visualization of microscopic flow structures using the confocal scanning microscope.

  • PDF

Scanning confocal microscope by direct oscillation of an optical fiber (광섬유의 직접 구동에 의한 공초점 현미경)

  • 김종배;류광현;박두성;노정은;권남익
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.80-84
    • /
    • 2003
  • We have constructed a scanning confocal microscope by directly oscillating an optical fiber in two different ways. Either a piezoelectric transducer or a tuning fork was used for the oscillation. Six frames of $640{\times}480$ pixel image were obtained in a second with piezoelectric oscillation and only one image of the same size was obtained in a second with tuning fork oscillation. Oscillation of optical fiber did not cause amy distortion of confocal images.