• Title/Summary/Keyword: 공진진동실험

Search Result 193, Processing Time 0.022 seconds

Vibration Suppression Method in Two-Mass System Based on Active Disturbance Rejection Control (능동 외란 제거 제어를 이용한 이관성 시스템의 진동 저감 기법)

  • Kim, Bum-Jin;Yoon, Young-Doo;Cho, Byung-Guek;Hong, Chanook
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.7-9
    • /
    • 2019
  • 이 논문은 이관성 시스템에서 능동 외란 제거 제어(Active Disturbance Rejection Control, ADRC) 기반의 진동 저감 알고리즘을 제안한다. 제안한 방법은 축소 차원 ADRC를 기반으로 구성하였다. ADRC 이론에 기반한 제어 이론은 전체 토크 중 전동기 측의 관성 모멘트에 대한 토크를 제외한 모든 토크를 외란 성분이라 설정한다. 외란에 대한 가속도 성분을 전체 외란(Total Disturbance)이라고 설정하고, 이를 추정하여 보상한다. 축소 차원 ADRC의 차수가 낮아서, 축소 차원 ADRC의 대역폭을 기존 ADRC의 대역폭보다 크게 설정할 수 있다. 그리고, 증가한 이득과 실질적인 구현을 고려하여, 이산 시간 영역에서 설계하였다. 제안된 알고리즘의 안정도를 확보하고, 성능을 높이기 위하여, 추정하는 제정수의 값을 실제 값보다 작게 설정하였다. 제안한 방법은 기계시스템의 공진에 의한 영향을 감쇄시킬 수 있다. 제안한 방법을 검증하기 위해, 시뮬레이션과 실험을 수행하였다.

  • PDF

Head Positioning Error due to Disk Flutter and Estimation of Permissible Track Density (디스크 플러터에 기인한 헤드위치 오차와 허용 트랙밀도의 추정)

  • Park, Dae-Kyong;Chang, Young-Bae;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.790-795
    • /
    • 2000
  • 디스크마다 일정영역을 할당하여 위치정보를 기록하는 임베디드 서보방식 하드디스크는 데이터가 저장되는 데이터 영역사이에서 스핀들 런아웃, 공진과 디스크 플러터 등에 의하여 Gaussian 분포를 가지는 트랙에서 벗어나는 오차를 가지게 된다. 더높은 저장밀도와 빠른 기록속도를 요구함에 따라서 디스크의 회전속도가 올라감에 의한 디스크 면진동에 의한 헤드 위치오차가 중요하게 대두되고 있다. 본 연구에서는 헤드위치 오차량을 계산하기 위하여 고속탐색이 가능한 수정된 Barasch의 수치해석법, 유한요소법, 그리고 실험을 통하여 적용가능성을 확인하였으며 같은 드라이브내에서 디스크의 사이즈를 바꿈에 의한 디스크 동특성의 해석과 변환율을 이용하여 오류가 발생할 수 있는 트랙 벗어남과 저장밀도의 상관관계를 살펴보았다.

  • PDF

Model Experiments on Sound Propagation in Shallow Water (천해에서의 음파전달에 관한 모형실험)

  • Kim, Sung-Boo;Kim, Sang-Han
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.101-104
    • /
    • 1996
  • The pressure field for the Pekeris model which is consisted of a surface layer of fresh water overlying a thick (essentially semi-infinite) bottom layer of coarse sand is investigated experimentally in a anechoic tank scaled down 1/1,000. The water depth and frequency have been controlled so that the continuous mode integrand has not a resonance close to cut-off, and the experimental results relatively well agree with the theory which is represented as the sum of the discrete modes over a range about 10 times the water depth.

  • PDF

Development of Measurement Equipment of Membrane Stress Using White Noise Sound Wave (화이트 노이즈 음파를 이용한 막구조물의 장력 측정장치 개발)

  • Jin, Sang-Wook;Ohmori, Hiroshi;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.2
    • /
    • pp.63-72
    • /
    • 2008
  • One of the most important matters in keeping membrane structures in healthy condition is to maintain the proper tension distribution over the membrane. However, it is not easy to know the real stress level in the membrane quantitatively after completion of the structures. Authors suggested measurement method that can measure membrane stress using sound wave, and have been holding experimental tests of membrane stress measurement that used the sound external excitation with sine wave and white noise. The concept of the method is the fact that measurement of resonance frequency by vibrating membrane having rectangular boundary by audible frequency can measure membrane stress indirectly. In this paper, through the experimental tests it is proved that the equipment can be used for not only the membrane material of type A but also for types B and C. In addition, it is proved that the developed measurement equipment is available to stably measure the membrane stress which exists in the membrane material of the actual membrane structures.

  • PDF

Analysis of Behavior Characteristics According to The Foundations Fixing Conditions of Storage Racks (적재설비 기초 고정조건에 따른 거동특성 분석)

  • Park, Chae-Rin;Heo, Gwang-Hee;Kim, Chung-Gil;Park, Jin-Yong;Ko, Byeong-Chan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.68-76
    • /
    • 2021
  • Storage racks have suffered huge losses due to earthquakes, but related research and regulations are relatively insufficient non-structural elements compared to the structural elements. In this study, we tried to experimentally analyze the behavioral characteristics of storage racks due to external force according to the fixing conditions of the column-foundations connection of storage racks. In general, the column-foundations connection of storage racks is installed according to the user's convenience without installation standards and regulations. For this reason, this study conducted a behavior analysis test on four full-scale storage racks with the condition of column-foundations connection of four typical storage racks. The behavior characteristics analysis test was performed by two-direction of the shake table with El-Centro seismic wave. To confirm the behavior characteristics according to the magnitude of the seismic load, 50% ~ 150% of the seismic waves were increased by 50% for each test. In addition, a resonance search test was conducted to confirm the natural frequency of each storage racks foundations fixing condition. Among the data obtained through the test, the displacement of the top layer and the permanent displacement after the test were compared for each condition to analyze the behavior characteristics of the column-foundations fixed conditions of the storage racks. As a result, the change of natural frequency was small in storage racks due to the change of the conditions of the foundations, and the behavior characteristics were changed due to the difference of the restoring force due to the change of the storage racks foundations condition rather than the influence of the natural frequency of the input load.

A new transmission-line model for multi-layered PZT ultrasonic transducer (다층 PZT 초음파 트랜스듀서에 대한 새로운 전송선로형 등가회로의 제안)

  • Kim, Moo-Joon;Ha, Kang-Lyeol;Kim, Sung-Boo;Lee, Jong-Kyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.29-37
    • /
    • 1995
  • A resonant frequency of piezoelectric transducer depends remarkably on the electric impedance connected to the vibrator. In this paper, using this effect of frequency controllable two layered PZT ultrasonic transducer is designed and its acoustic characteristics are analyzed by a new transmission model equivalent circuit. The theoretical and the experimental results of the electric impedance effect on the resonant frequency variation were compared and both results showed a good consistency each other. The resonant frequency has been controlled continuously in the wide frequency range of 180kHz~580kHz and the effective attenuations were less than 7dB in the frequency range of 330kHz~470kHz.

  • PDF

Research for Effective Vibrational Rapping Performance of Multiple Electrostatic Precipitators in Series and Parallel Arrangements (전기집진기의 직렬 및 병렬식 배열에 따른 효율적인 진동 탈진에 대한 연구)

  • Choi, Ji-Hyun;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4136-4141
    • /
    • 2013
  • One of the most significant requisite that should be considered for effective rapping of the electrostatic precipitator using electromagnetic vibration exciter is vibration acceleration and resonance frequency of collecting plates. This vibration acceleration shows its peak points when natural frequencies of the system are corresponded with excitation frequency from the power source, and effective rapping performance can be expected. In this research, extend view of single electrostatic precipitator using one electromagnetic vibration exciter, the system was remodeled by arrangement of the exciters in view of multiple modules of the electrostatic precipitator in fields. And vibration acceleration measurement experiment is performed and measured values are compared with these remodeled systems. By this experimental comparison in series and parallel arrangement, effectiveness of arrangement methods for the electromagnetic vibration exciter, expected rapping performance, and power consumption are verified.

Measurement of Shear Contact Characteristics on Mechanical Joints (기계 조인트의 전단 컨택 특성 측정)

  • Lee, Chul-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.849-855
    • /
    • 2008
  • An experimental method based on contact resonance is developed to extract the contact parameters of mechanical joints under various clamped conditions. Mechanical joint parameters of shear contact stiffness and damping were extracted for different physical joint parameters such as surface finish of the mating surfaces, the presence of lubrication, the effect of the clamping pressure, and shear load. It was found that the shear contact stiffness values decreased with increasing clamping load and increased with increasing shear loading. Contact damping ratio values were almost constant with clamping load, but decreased with increasing shear load. Moreover, rough surfaces exhibited the highest shear stiffness and contact damping compared to smooth surfaces.

Real-time Feedback Vibration Control of Structures Using Wireless Acceleration Sensor System - System Design and Basic Performance Evaluation - (무선 가속도센서 시스템을 이용한 건축물의 실시간 피드백 진동제어 - 시스템 구축 및 기초성능 평가 -)

  • Jeon, Joon Ryong;Park, Ki Tae;Lee, Chin Ok;Heo, Gwang Hee;Lee, Woo Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.21-32
    • /
    • 2013
  • This is a preliminary study for the real-time feedback vibration control of building structures. The study developed a wireless acceleration sensor system based on authentic technology capacities, to integrate with the Prototype AMD system and ultimately construct the feedback vibration control system. These systems were used to evaluate the basic performance levels of the control systems within model building structures. For this purpose, the study first developed a wireless acceleration sensor unit that integrates an MEMS sensor device and bluetooth communication module. Also, the study developed an operating program that enables control output based on real-time acceleration response measurement and control law. Furthermore, the Prototype AMD and motor driver system were constructed to be maneuvered by the AC servo-motor. Eventually, all these compositions were used to evaluate the real-time feedback vibration control system of a 2-story model building, and qualitatively measure the extent of vibrational reduction of the target structure within the laboratory validation tests. As a result of the tests, there was a definite vibrational reduction effect within the laboratory validation tests. As a result of the tests, there was a definite vibrational reduction effect within 1st and 2nd resonance frequency as well as the random frequency of the model building structure. Ultimately, this study confirmed the potential of its wireless acceleration sensor system and AMD system as an effective tool that can be applied to the active vibration control of other structures.

An Experimental Study on Shape Oscillation Mode of a Pendant Droplet by an Acoustic Wave (음향 가진을 이용한 매달려 있는 액적의 형상 진동 모드에 관한 실험적 연구)

  • Kang Byung-Ha;Moon Jong-Hoon;Kim Ho-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.523-530
    • /
    • 2006
  • One of the fascinating prospects is the possibility of new hydrodynamics technology on micro-scale system since oscillations of micro-droplets are of practical and scientific importance. It has been widely conceived that the lowest oscillation mode of a pendant droplet is the longitudinal vibration, i.e. periodic elongation and contraction along the longitudinal direction. Nonlinear and forced oscillations of supported viscous droplet were focused in the present study. The droplet has a free contact line with solid plate and inviscid fluid. Natural frequencies of a pendant droplet have been investigated experimentally by imposing the acoustic wave while the frequency is being increased at a fixed amplitude. It is found that a pendant droplet shows the resonant behaviors at each mode similar to the theoretical analysis. The rotation of the droplet about the longitudinal axis is the oscillation mode of the lowest resonance frequency. This rotational mode can be invoked by periodic acoustic forcing and is analogous to the pendulum rotation. It is also found that the natural frequency of a pendant droplet is independent of the drop density and surface tension but inversely proportional to the square root of the droplet size.