• Title/Summary/Keyword: 공존 가스

Search Result 42, Processing Time 0.022 seconds

Anaerobic Ammonium Oxidation(ANAMMOX) in a Granular Sludge Reactor and its Bio-molecular Characterization (입상 슬러지 반응조 내의 혐기성 암모늄 산화(ANAMMOX) 및 분자생태학적 특성 평가)

  • Han, Ji-Sun;Park, Hyun-A;Sung, Eun-Hae;Kim, Chang-Gyun;Yoon, Cho-Hee;Bae, Young-Shin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1213-1221
    • /
    • 2006
  • In this study, granular sludge used in an anaerobic process treating brewery waste was inoculated in a laboratory scale of reactor to induce anaerobic ammonium oxidation(ANAMMOX). The reactor was operated with synthetic wastewater, which prepared at 1:1 ratio of $NH_4^+-N$ over $NO_2^--N$. Changes in nitrogen concentration, COD, alkalinity and gas production were analyzed. There are 3 phases of spanning in experimental period according to influent nitrogen concentration. In the Phase 1, each of the concentration of $NH_4^+-N$ and $NO_2^--N$ were increased from 1.91 $gN/m^3{\cdot}d$ to 14.29 $gN/m^3{\cdot}d$. Ammonium nitrogen loading(same as nitrite nitrogen) was 23.81 $gN/m^3{\cdot}d$ in the Phase 2 and 19.05 $gN/m^3{\cdot}d$ in the Phase 3, respectively $NO_2^--N$ has been removed up to 99% during whole period while the removal efficiency of $NH_4^+-N$ was significantly varied. In Phase 2, $NH_4^+-N$ was removed up to 75%. Microorganisms varied temporally through three phases were characterized by 16s rDNA analysis methods. ANAMMOX bacteria were dominantly found in phase 2 when the removal rate of $NO_2^--N$and $NH_4^+-N$ was the highest up to 99% and 75%, respectively. Due to erroneous exposed to air, the removal efficiency of $NH_4^+-N$ was unexpectedly lowered, but ANAMMOX bacteria still existed.

Effects of climate change on biodiversity and measures for them (생물다양성에 대한 기후변화의 영향과 그 대책)

  • An, Ji Hong;Lim, Chi Hong;Jung, Song Hie;Kim, A Reum;Lee, Chang Seok
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.474-480
    • /
    • 2016
  • In this study, formation background of biodiversity and its changes in the process of geologic history, and effects of climate change on biodiversity and human were discussed and the alternatives to reduce the effects of climate change were suggested. Biodiversity is 'the variety of life' and refers collectively to variation at all levels of biological organization. That is, biodiversity encompasses the genes, species and ecosystems and their interactions. It provides the basis for ecosystems and the services on which all people fundamentally depend. Nevertheless, today, biodiversity is increasingly threatened, usually as the result of human activity. Diverse organisms on earth, which are estimated as 10 to 30 million species, are the result of adaptation and evolution to various environments through long history of four billion years since the birth of life. Countlessly many organisms composing biodiversity have specific characteristics, respectively and are interrelated with each other through diverse relationship. Environment of the earth, on which we live, has also created for long years through extensive relationship and interaction of those organisms. We mankind also live through interrelationship with the other organisms as an organism. The man cannot lives without the other organisms around him. Even though so, human beings accelerate mean extinction rate about 1,000 times compared with that of the past for recent several years. We have to conserve biodiversity for plentiful life of our future generation and are responsible for sustainable use of biodiversity. Korea has achieved faster economic growth than any other countries in the world. On the other hand, Korea had hold originally rich biodiversity as it is not only a peninsula country stretched lengthily from north to south but also three sides are surrounded by sea. But they disappeared increasingly in the process of fast economic growth. Korean people have created specific Korean culture by coexistence with nature through a long history of agriculture, forestry, and fishery. But in recent years, the relationship between Korean and nature became far in the processes of introduction of western culture and development of science and technology and specific natural feature born from harmonious combination between nature and culture disappears more and more. Population of Korea is expected to be reduced as contrasted with world population growing continuously. At this time, we need to restore biodiversity damaged in the processes of rapid population growth and economic development in concert with recovery of natural ecosystem due to population decrease. There were grand extinction events of five times since the birth of life on the earth. Modern extinction is very rapid and human activity is major causal factor. In these respects, it is distinguished from the past one. Climate change is real. Biodiversity is very vulnerable to climate change. If organisms did not find a survival method such as 'adaptation through evolution', 'movement to the other place where they can exist', and so on in the changed environment, they would extinct. In this respect, if climate change is continued, biodiversity should be damaged greatly. Furthermore, climate change would also influence on human life and socio-economic environment through change of biodiversity. Therefore, we need to grasp the effects that climate change influences on biodiversity more actively and further to prepare the alternatives to reduce the damage. Change of phenology, change of distribution range including vegetation shift, disharmony of interaction among organisms, reduction of reproduction and growth rates due to odd food chain, degradation of coral reef, and so on are emerged as the effects of climate change on biodiversity. Expansion of infectious disease, reduction of food production, change of cultivation range of crops, change of fishing ground and time, and so on appear as the effects on human. To solve climate change problem, first of all, we need to mitigate climate change by reducing discharge of warming gases. But even though we now stop discharge of warming gases, climate change is expected to be continued for the time being. In this respect, preparing adaptive strategy of climate change can be more realistic. Continuous monitoring to observe the effects of climate change on biodiversity and establishment of monitoring system have to be preceded over all others. Insurance of diverse ecological spaces where biodiversity can establish, assisted migration, and establishment of horizontal network from south to north and vertical one from lowland to upland ecological networks could be recommended as the alternatives to aid adaptation of biodiversity to the changing climate.