• Title/Summary/Keyword: 공조시스템(air conditioning system)

Search Result 263, Processing Time 0.026 seconds

Thermal Behavior of Air Conditioning System in an Indoor Energy Storage System (실내 에너지저장시스템 공조시스템의 열적 거동에 관한 연구)

  • Kim, Junyoung;Choi, Naksam;Kim, Jintaek
    • New & Renewable Energy
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 2021
  • The energy use is increasing as the quality of human life improves. and research on the efficient use of energy in ESS (Energy Storage System) is ongoing. An air conditioner is required for the efficient use of an ESS, as are data on the distribution of the temperature of the latter based on the capacity of the air conditioner. In the absence of an air conditioner, the battery of the ESS reaches its maximum temperature of 40℃ after 2 h. When an air conditioner is present, the temperature of the battery stabilizes as the capacity of the former increases.

Study on Fresh Air Load Reduction System by Using Geothermal Energy - Reducing Effect of a Fresh Air Load by Combining with Air-heated Solar Collector - (지열을 이용한 공조외기부하저감 시스템에 관한 연구 - 공기식 집열기와의 병용에 의한 공조외기부하저감 효과 -)

  • Son Won-Tug;Lee Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1218-1226
    • /
    • 2004
  • This paper presents thermal behaviors and performances of a fresh air load reduction system by using earth tube system combined with air-heated solar collector. The earth tube system reduces a fresh air load by heat exchange with soil throughout the year. In the previous experimental research, it was clarified that the earth tube system was very useful as a fresh air load reduction system. However, since outlet temperature of the fresh air which was heated by earth tube system was below 15$^{\circ}C$ in winter, it is not suitable to introduce the fresh air into the place of residence directly. Therefore, a simulation model using the simple heat diffusion equation was used to examine a rising effect of outlet air temperature in winter by combining with air-heated solar collector. An improvement of annual performance by control of operation is also quantitatively examined. In conclusion, it is confirmed that its performance is improved by control of operation throughout the year and outlet air temperature rose by combining with air-heated solar collector.

Energy Consumption and Thermal Comfort Assessment of Conventional Forced-air System According to AHU Discharge Air Temperature (AHU 토출온도에 따른 일반 공조시스템의 에너지 소비량 및 실내 온열환경 분석)

  • Kim, Min Ji;Yeon, Sang Hun;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.2
    • /
    • pp.51-57
    • /
    • 2018
  • Recently, global warming has been a serious issue on the worldwide, and the importance of energy conservation is increasing. In most buildings, energy consumption increases due to cooling, heating, and ventilation. Because of these issues, researches have been carried out to reduce building energy. However, in most conventional forced-air system, the guidelines for the Air Handling Unit (AHU) discharge air temperature are not fully established. The purpose of this study is to assess the impact of AHU discharge air temperature, which is one of the important control variables, on the overall energy consumption and thermal comfort characteristics by modeling conventional forced-air system using EnergyPlus. In addition, recommendations for energy reduction in conventional AHU is provided.

Study on the Collector Efficiency of an Air Heater in a Solar Air Conditioning System (태양열 이용 냉난방 공조시스템 중 공기식 집열기의 집열효율에 관한 연구)

  • Kim, B.C.;Shin, H.J.;Choi, K.H.;Kum, J.S.
    • Solar Energy
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2000
  • The suggested year round solar air conditioning system has been developed for cooling and heating. In particular, this system focused on cooling and dehumidification and it could reduce a peak time owing to the use of air conditioners in summer. This study was performed to find out how much heating loads could be saved and furthermore whether this suggested system would be possible to do heating without a switch of system in real situations. Through model house experiments, the following conclusions were obtained. 1) The collector efficiency was 36% at maximum, but more improved structure of suggested collector could increase its efficiency. 2) The temperature of outlet air was about $30^{\circ}C$ and it could reduce heating loads. 3) Measured temperature and calculated one agreed well within ${\pm}1.5^{\circ}C$.

  • PDF

Comparison on the Energy Performance of Underfloor Air Distribution System According to Modeling Method Using EnergyPlus (EnergyPlus를 이용한 바닥공조시스템의 모델링 방법에 따른 에너지 성능 비교)

  • Jang, Hyang-In;Yoon, Seong-Hoon;Lee, Hyun-Soo;Suh, Seung-Jik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.10
    • /
    • pp.718-723
    • /
    • 2012
  • The purpose of this study is to propose modeling method of Underfloor Air Distribution System with reliability and validity by comparing characteristics of modeling methods. For this, the modeling methods of UFAD were selected by investigating various modeling methods of previous researches. Then, simulations were conducted by using EnergyPlus which is dynamic analysis program of building energy. Annual energy consumption for each method was compared with a wide range of indoor thermal loads. As a result, the methodology of reducing internal gains can cause under sizing of the system. It suggests modeling methods to reflect occupied zone air-conditioning, temperature stratification and supply plenum which are the main characteristics of UFAD.

A Study on Design Techniques and Effectiveness in Energy Saving of Occupied Zone in UFAD System (바닥급기 시스템의 거주역 공조를 위한 설계 기법 및 에너지 절감 효과에 관한 연구)

  • Yu, Ki-Hyung;Song, Kyoo-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.127-133
    • /
    • 2007
  • Underfloor air distribution system is generally known to be more energy-saving and provide more comfort as compared with overhead air distribution system. In practice, however, some buildings to which underfloor air distribution system is applied have less effectiveness in saving energy and are getting dissatisfaction with cold draft caused by wind velocity of air distribution in terms of comfort. It is judged that such problems are due to failure to consider properties of underfloor air distribution system in applying it and identical design with the design standards for the existing overhead air distribution system. This study aims at introducing an air conditioning type of the occupied zone for underfloor all distribution system to see its effectiveness in saving energy for air conditioning of the occupied zone through a comparative simulation with the existing air conditioning type.

Power consumption prediction model based on artificial neural networks for seawater source heat pump system in recirculating aquaculture system fish farm (순환여과식 양식장 해수 열원 히트펌프 시스템의 전력 소비량 예측을 위한 인공 신경망 모델)

  • Hyeon-Seok JEONG;Jong-Hyeok RYU;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.87-99
    • /
    • 2024
  • This study deals with the application of an artificial neural network (ANN) model to predict power consumption for utilizing seawater source heat pumps of recirculating aquaculture system. An integrated dynamic simulation model was constructed using the TRNSYS program to obtain input and output data for the ANN model to predict the power consumption of the recirculating aquaculture system with a heat pump system. Data obtained from the TRNSYS program were analyzed using linear regression, and converted into optimal data necessary for the ANN model through normalization. To optimize the ANN-based power consumption prediction model, the hyper parameters of ANN were determined using the Bayesian optimization. ANN simulation results showed that ANN models with optimized hyper parameters exhibited acceptably high predictive accuracy conforming to ASHRAE standards.

Remote Refrigeration Air-Conditioning Control System using Bluetooth (블루투스를 이용한 원격 냉동 공조 제어시스템)

  • Park, Jin-Su;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.113-114
    • /
    • 2013
  • 일반적인 소규모 휘발성유기화합물(VOCs:Volatile Organic Compounds) 배출시설인 주유소, 세탁소, 도장시설 등의 환경에서 대기로 배출되는 휘발유 유증기, 세탁용제(솔벤트유) 증기 등을 포집하여 포집된 유증기를 다시 액화처리 과정을 통하여 휘발유, 솔벤트로 재생산하는 기존의 PLC(Programable Logic Control) 방식의 처리과정을 ICT(Information Communication Technology)을 도입하여 보다 효율적이고 안정적인 스마트한 VOCs 액화장치 관리시스템을 개발하고자 한다. 현재 기존의 주유소 휘발유증기액화장치는 타이머와 릴레이 등을 조합하여 냉동 공조 장치로 동작하도록 하고 있다. 이는 단순한 전기제어로 동작하여 관리자가 항시 주의를 요하며 전력소비가 심해 생산량에 비해 손해가 발생하게 되며, 관리자가 원격지에서 생산량과 현 상황을 확인할 방법이 존재하지 않아 항상 관리자가 직접 수기로 기록하게 되어 많은 불편사항이 발생하였다. 본 논문에서 이러한 기존의 시스템을 대부분 유지하고 자동화와 원격 모니터링 시스템을 갖추고 블루투스(bluetooth) 모듈을 이용하여 원격에서 시스템을 관리할 수 있도록 개발하고자 한다.

  • PDF