• Title/Summary/Keyword: 공정호환

Search Result 91, Processing Time 0.023 seconds

Analysis of Key Parameters for the Printing Process Optimization of a Fluid Dispensing Systems (유체 디스펜싱 시스템의 프린팅 프로세스 최적화를 위한 주요 파라미터 분석)

  • Hoseung Kang;Haechang Jeong;Soonho Hong;Nam Kyung Yoon;Sunyoung Sohn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.382-393
    • /
    • 2024
  • The Microplotter system with a fluid dispensing method, sprays fluid based on ultrasonic pumping through piezoelectric devices. This technique can possible for various materials with a wide range of viscosities to be printed in microscale. In this paper, we introduces dispenser printing technology as well as aim to understand and apply various processes using the equipment. In addition, we will explain how to optimize the equipment by adjusting parameters such as spray intensity, tip height during printing, and patterning speed. By utilizing Microplotter's advantage of being compatible with a wide range of fluids, including metal nanoparticles, carbon nanotubes, DNA, and proteins, it is expected to be used in various fields such as printed electronics, biotechnology, and chemical engineering.

Characterization for Viscoelasticity of Glass Fiber Reinforced Epoxy Composite and Application to Thermal Warpage Analysis in Printed Circuit Board (유리섬유강화 복합재의 점탄성 특성 규명 및 인쇄회로기판 열변형해석에의 적용)

  • Song, Woo-Jin;Ku, Tae-Wan;Kang, Beom-Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.245-253
    • /
    • 2010
  • The reliability problems of flip chip packages subjected to temperature change during the packaging process mainly occur due to mismatches in the coefficients of thermal expansion as well as features with time-dependent material properties. Resin molding compounds like glass fiber reinforced epoxy composites used as the dielectric layer in printed circuit boards (PCB) strongly exhibit viscoelastic behavior, which causes their Young's moduli to not only be temperature-dependent but also time-dependent. In this study, the stress relaxation and creep tests were used to characterize the viscoelastic properties of the glass fiber reinforced epoxy composite. Using the viscoelastic properties, finite element analysis (FEA) was employed to simulate thermal loading in the pre-baking process and predict thermal warpage. Furthermore, the effect of viscoelastic features for the major polymeric material on the dielectric layer in the PCB (the glass fiber reinforced epoxy composite) was investigated using FEA.

A Production Planning System for Assembly Process of Offshore Structure Modules (해양구조물의 모듈조립공정을 위한 생산계획법)

  • Jeong-Je Kim;So-Heum Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.173-190
    • /
    • 1992
  • Considerable number of offshore platforms have been built in Korean shipyards ever since 1976. Unlike for the cases of building ships, however, negligible efforts have been made to establish planning methodology for building onshore platforms. Severe congestion has been shown in the processes of assemblying modules of platforms. The module which is the upper part of a platform is a steel structure accommodating various types of outfittings and machinaries. The production planned without proper consideration on allocating work loads by trade used to show severe interferences among trades of workers and resulted in delayed completion. In this paper, a method of planning module assembly in consideration of leveling work loads by trade is discussed. A system of planning has been formulated and tested on a exampled case of producing a mix of 72 modules. The test showed a possibility of saving 31% of manpower and trimming 11% of through put time.

  • PDF

The Change of Industrial Structure and Public Interest as to the Convergence of Broadcasting and Telecommunications (방송통신 융합에 따른 산업구조의 변화와 공익성)

  • Joo, Chung-Min
    • Korean journal of communication and information
    • /
    • v.36
    • /
    • pp.109-132
    • /
    • 2006
  • It is difficult to found the concept of public interest properly, being ambiguous to distinguish media and service as to the convergence of broadcasting and telecommunications. Accordingly, it is necessary to found the concept of public interest not related to the character of media and service in the age of digital convergence. Therefore this study intended to re-found the concept of public interest, as to industrial changes in the age of convergence of broadcasting and telecommunications. The convergence of broadcasting and telecommunications causes the changes of value chain, which includes contents, platform, network, terminal. It could not help avoiding modifying the industrial structure of broadcasting and telecommunications, because of the changes of value chain. The changes of industrial structure needs the changes of ideology, regulatory policy, regulatory system, and it creates the foundation of new regulatory idea. The purpose of regulatory idea in the age of digital convergence is to practice public interest, and it is an ultimate purpose to increase consumers' welfare. Consequently, for increasing comsumer' welfare, it is necessary to achieve diversity, fairness, objectivity, the preservation of social value in the aspect of contents. Also in the aspect of platform, it is necessary to achieve the protection of privacy, consumer protection, harmful information blocking, and in the aspect of network, it is necessary to achieve the maintenance of secure network, fair competition. Finally, in the aspect of terminal, it is necessary to achieve the maintenance of compatibility, the solution for digital divide. Then regulatory policy of each value chain from a legal and institutional perspective, should be promoted to provide public interest, step by step.

  • PDF

SiGe Alloys for Electronic Device Applications (실리콘-게르마늄 합금의 전자 소자 응용)

  • Lee, Seung-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2011
  • The silicon-germanium (SiGe) alloy, which is compatible with silicon semiconductor technology and has a smaller band gap and a lower thermal conductivity than silicon, has been used to fabricate electronic devices such as transistors, photodetectors, solar cells, and thermoelectric devices. This paper reviews the application of SiGe alloys to electronic devices and related technical issues. Since the SiGe alloy comprises germanium whose band gap is smaller than silicon, its band gap is also smaller than that of silicon irrespective of the ratio of silicon to germanium. This narrow band gap of SiGe enables the base thickness of bipolar transistors to decrease without a loss in current gain so that it is possible to improve the speed of bipolar transistors by adopting the SiGe-base. In addition, the conversion efficiency of solar cells is enhanced by the absorption of long-wavelength light in the SiGe absorption layer. Phonon scattering caused by the irregular distribution of alloying elements induces the lower thermal conductivity of SiGe than those of pure silicon and germanium. Because a thin film layer with a low thermal conductivity suppresses thermal conduction through a thermal sink, the SiGe alloy is considered to be a promising material for silicon-based thermoelectric systems.

The Polymer Bonding for Low-temperature Cu Hybrid Bonding (저온 Cu 하이브리드 본딩을 위한 폴리머 본딩)

  • Ji Hun Kim;Jong Kyung Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.3
    • /
    • pp.1-9
    • /
    • 2024
  • This paper addresses the significance of Cu/Polymer Hybrid Bonding technology in the advancement of semiconductor packaging. As the demands of the AI era increase, the semiconductor industry is exploring heterogeneous integration packaging technologies to achieve high I/O counts, low power consumption, efficient heat dissipation, multifunctionality, and miniaturization. The conventional Cu/SiO2 Hybrid Bonding structure faces limitations such as achieving compatibility with CMP processes to attain surface roughness below 1nm and the occurrence of bonding defects due to particles. However, Cu/Polymer Hybrid Bonding technology, utilizing polymers, is gaining attention as a promising alternative to overcome these challenges. This study focuses on the deposition, patterning, and material properties of polymers essential for Cu/Polymer Hybrid Bonding, highlighting the advantages and potential applications of this technology compared to existing methods. Specifically, the use of polymers with low glass transition temperatures (Tg) is discussed for their benefits in low-temperature bonding processes and improved mechanical properties due to their high coefficients of thermal expansion. Furthermore, the study explores surface property modifications of polymers and the enhancement of bonding mechanisms through plasma treatment. This research emphasizes that Cu/Polymer Hybrid Bonding technology can serve as a critical breakthrough in developing high-performance, low-power semiconductor devices within the industry.

A UTMI-Compatible USB2.0 Transceiver Chip Design (UTMI 표준에 부합하는 USB2.0 송수신기 칩 설계)

  • Nam Jang-Jin;Kim Bong-Jin;Park Hong-June
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.5 s.335
    • /
    • pp.31-38
    • /
    • 2005
  • The architecture and the implementation details of a UTMI(USB2.0 Transceiver Macrocell Interface) compatible USB2.0 transceiver chip were presented. To confirm the validation of the incoming data in noisy channel environment, a squelch state detector and a current mode Schmitt-trigger circuit were proposed. A current mode output driver to transmit 480Mbps data on the USB cable was designed and an on-die termination(ODT) which is controlled by a replica bias circuit was presented. In the USB system using plesiochronous clocking, to compensate for the frequency difference between a transmitter and a receiver, a synchronizer using clock data recovery circuit and FIFO was designed. The USB cable was modeled as the lossy transmission line model(W model) for circuit simulation by using a network analyzer measurements. The USB2.0 PHY chip was implemented by using 0.25um CMOS process and test results were presented. The core area excluding the IO pads was $0.91{\times}1.82mm^2$. The power consumptions at the supply voltage of 2.5V were 245mW and 150mW for high-speed and full-speed operations, respectively.

The image format research which is suitable in animation work (애니메이션 작업에 사용되는 이미지 포맷 연구)

  • Kwon, Dong-Hyun
    • Cartoon and Animation Studies
    • /
    • s.14
    • /
    • pp.37-51
    • /
    • 2008
  • The computer has become an indispensable tool for animation works. However if you don't understand the characteristics of the computer and its software, you might not have the result satisfying your efforts. The incorrect understanding of image format sometimes causes it. Habitually image formats are selected usually for most of works but there is a distinct difference among those image formats while the efficient usages of them are different from each other. For your more efficient work therefore, you need to identify the characteristics of various kinds of image format used mostly for animation works. First I took a look at the theories of the lossy compression and lossless compression, which are two types of data compression widely used in the whole parts of computer world and the difference between bitmap method and vector method, which are respectably different in terms of the way of expressing images and finally the 24 bit true color and 8 bits alpha channel. Based on those characteristics, I have analyzed the functional difference among image formats used between various types of animation works such as 2D, 3D, composing and editing and also the benefits and weakness of them. Additionally I've proved it is wrong that the JPEG files consume a small space in computer work. In conclusion, I suggest the TIF format as the most efficient format for whatever it is editing, composing, 3D and 2D in considering capacity, function and image quality and also I'd like to recommend PSD format which has compatibility and excellent function, since the Adobe educational programs are used a lot for the school education. I hope this treatise to contribute to your right choice of image format in school education and practical works.

  • PDF

Flexible Unit Floor Plan of a Modular House Considering the Production System (생산 시스템을 고려한 모듈러주택의 가변형 평면계획 연구)

  • Lee, Ji-Eun
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.67-78
    • /
    • 2021
  • After World War II, modular housing was developed as a means of quickly and efficiently meeting the housing supply demand. For the past 30 plus years, efforts have been made to improve modular housing in South Korea and to increase their competitiveness in the housing market. This study investigated modular houses based on a steel framed rahem structure which provides a flexible floor plan where walls are easily reconfigured to create rooms of various sizes and functions. Similar to the factory production methods used in the automotive industry, the modular housing industry can also benefit by standardizing such aspects as building components, manufacturing and construction methods, materials, process management, and floor plans. This study examined the feasibility of using a 3m × 3m module for developing various floor plans which are easy to produce and transport. Each 3m × 3m module can be configured to meet different living needs resulting in a complete home when multiple modules are connected. The module configurations can be varied to meet ground transportation and crane limitations. This study found that a 3m × 3m steel framed modular unit is a promising step towards providing residents with plans that meet their living preferences while improving and increasing the supply of modular houses.

60 GHz CMOS SoC for Millimeter Wave WPAN Applications (차세대 밀리미터파 대역 WPAN용 60 GHz CMOS SoC)

  • Lee, Jae-Jin;Jung, Dong-Yun;Oh, Inn-Yeal;Park, Chul-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.670-680
    • /
    • 2010
  • A low power single-chip CMOS receiver for 60 GHz mobile application are proposed in this paper. The single-chip receiver consists of a 4-stage current re-use LNA with under 4 dB NF, Cgs compensating resistive mixer with -9.4 dB conversion gain, Ka-band low phase noise VCO with -113 dBc/Hz phase noise at 1 MHz offset from 26.89 GHz, high-suppression frequency doubler with -0.45 dB conversion gain, and 2-stage current re-use drive amplifier. The size of the fabricated receiver using a standard 0.13 ${\mu}m$ CMOS technology is 2.67 mm$\times$0.75 mm including probing pads. An RF bandwidth is 6.2 GHz, from 55 to 61.2 GHz and an LO tuning range is 7.14 GHz, from 48.45 GHz to 55.59 GHz. The If bandwidth is 5.25 GHz(4.75~10 GHz) The conversion gain and input P1 dB are -9.5 dB and -12.5 dBm, respectively, at RF frequency of 59 GHz. The proposed single-chip receiver describes very good noise performances and linearity with very low DC power consumption of only 21.9 mW.