• Title/Summary/Keyword: 공액경사법

Search Result 16, Processing Time 0.017 seconds

An Optimization Approach to the Wind-driven Ocean Circulation Model (해수순환모델에 대한 최적화 방법)

  • KIM Jong-Kyu;RYU Cheong-Ro;CHANG Sun-duck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.787-793
    • /
    • 1994
  • It has been demonstrated for the finite-difference ocean circulation model that the problem of uncertain forcing and input data can be tackled with an optimization techniques. The uncertainty problem in interesting flow properties is exploring a finite difference ocean circulation model due to the uncertainty in the driving boundary conditions. The mathematical procedure is based upon optimization method by the conjugate gradient method using the simulated data and a simple barotropic model. An example for the ocean circulation model is discussed in which wind forcing and the steady-state circulation are determined from a simulated stream function.

  • PDF

Optimization Inverse Design Technique for Fluid Machinery Impellers (유체기계 임펠러의 최적 역설계 기법)

  • Kim J. S.;Park W. G.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.37-45
    • /
    • 1998
  • A new and efficient inverse design method based on the numerical optimization technique has been developed. The 2-D incompressible Navier-Stokes equations are solved for obtaining the objective functions and coupled with the optimization procedure to perform the inverse design. The steepest descent and the conjugate gradient method have been applied to find the searching direction. The golden section method was applied to compute the design variable intervals. It has been found that the airfoil and the pump impellers are well converged to their targeting shapes.

  • PDF

Design and Fabrication of Rectangular Iris Waveguide Filter for Microwave Broadcasting Transponder (마이크로파 방송 중계기용 구형창 도파관 필터 설계 및 제작)

  • 문성익;양두영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.530-538
    • /
    • 1999
  • In this paper, design of rectangular iris waveguide filter for the microwave broadcasting transponder using WR137 is applied to the modified ${TE^x}_{mn}$ mode theory in order to exactly analyze the characteristic of the waveguide discontinuity. We designed and fabricated the rectangular iris waveguide filter with the bandwidth 47 MHz for the microwave broadcasting transponder applied the conjugate gradient method to the modified ${TE^x}_{mn}$ mode theory. The results show a good characteristics that the $S_{11}$ and $S_{21}$ are -23 ㏈, -0.56 ㏈ and the maximum VSWR is below 1.02 in the passband.

  • PDF

Sound Control of Structural-acoustic Coupling System Using Optimum Layout of Absorbing Material and Damping Material (흡음재 및 제진재의 최적배치를 이용한 구조-음향 연성계의 소음제어)

  • Kim, Dong-Young;Hong, Do-Kwan;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.161-168
    • /
    • 2005
  • The absorbing material is mostly used to changing the acoustic energy to the heat energy in the passive control, and that consists of the porous media. That controls an air borne noise while the stiffened plates, damping material and additional mass control a structure borne noise. The additional mass can decrease the sound by mass effect and shift of natural frequency, and damping material can decrease the sound by damping effect. The passive acoustic control using these kinds of control materials has an advantage that is possible to control the acoustic in the wide frequency band and the whole space at a price as compared with the active control using the various electronic circuit and actuator. But the space efficiency decreased and the control ability isn't up to the active control. So it is necessary to maximize the control ability in the specific frequency to raise the capacity of passive control minimizing the diminution of space efficiency such an active control. Therefore, the characteristics of control materials and the optimum layout of control materials that attached to the boundary of structure-acoustic coupled cavity were studied using sequential optimization on this study.

Optimization for Xenon Oscillation in Load Following Operation of PWR (가압경수형 원자로 부하추종 운전시 제논진동 최적화)

  • 김건중;오성헌;박인용
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.861-869
    • /
    • 1989
  • The optimization problems, based on Pontryagin's Maximum Principle, for minimizing (damping) Xenon spatial oscillations in Load Following operations of Pressurized Water Reactor (PWR) is presented. The optimization model is formulated as an optimal tracking problem with quadratic objective functional. The oen-group diffusion equations and Xe-I dynamic equations are defined as equality constraints. By applying the maximum principle, the original problem is decomposed into a single time problem with no constraints. The resultant subproblems are optimized by using the conjugate Gradient Method. The computational results show that the Xenon spatial oscillation is minimized, and the reactor follows the load demand of the electrical power systems while maintaining the desired power distribution.

Prediction of Strength for Transversely Isotopic Rock Based on Critical Plane Approach (임계면법을 이용한 횡등방성 암석의 강도 예측)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.119-127
    • /
    • 2007
  • Based on the critical plane approach, a methodology far predicting the anisotropic strength ot transversely isotropic rock is Proposed. It is assumed that the rock failure is governed by Hoek-Brown failure criterion. In order to establish an anisotropic failure function, Mohr envelope equivalent to the original Hoek-Brown criterion is used and the strength parameters m, s are expressed as scalar functions of orientation. The conjugate gradient method, which is one of the robust optimization techniques, is applied to the failure function for searching the orientation giving the maximum value of the anisotropic function. While most of the existing anisotropic strength models can be applied only when the stress condition is the same as that of conventional triaxial compression test, the proposed model can be applied to the general 3-dimensional stress conditions. Through the simulation of triaxial compression tests for transversely isotropic rock sample, the validity of the proposed method is investigated by comparing the predicted triaxial strengths and inclinations of failure plane.