• Title/Summary/Keyword: 공압 구동기

Search Result 32, Processing Time 0.02 seconds

Piezo-Composite Actuator for Control Surface of a Small Unmanned Air Vehicle (소형 무인 비행체 조종면 작동용 압전 복합재료 작동기 연구)

  • Yoon, Bum-Soo;Park, Ki-Hoon;Yoon, Kwang-Joon
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.47-51
    • /
    • 2014
  • The purpose of the present study is to develop lightweight and simple smart actuators in order to replace conventional hydraulic/pneumatic actuators, and to apply the developed actuators to the actuation systems of a small unmanned air vehicle. This research describes the procedures of design, manufacturing of the piezo-composite actuator, and the performance evaluation. From the test results of the developed devices, we found the possibility of piezo-composite actuator could be used as a control surface of a small UAV system. We have designed and manufactured two kinds of piezo-composite actuators, unimorph actuator and bimorph actuator. The manufactured actuators were evaluated through the performance testes. It was found that the bimorph type actuator showed more linear angle change for the same excitation voltage variation than unimorph type. It is expected that piezo-composite actuator has a possibility to be used not only as a control surface of small unmanned flying vehicle but also as a control surface actuator of a guided missile fin through the miniaturization of power supply and control system.

Dynamic Characteristic Analysis of Permanent Magnetic Actuator Applying Bearing Type Bushing (베어링 타입 부싱을 적용한 영구 자석형 조작기의 동작 특성 해석)

  • Kim, Tae-Yong;Kang, Jong-Ho;Choi, Sang-Min;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.74-76
    • /
    • 2006
  • 최근 중 저압용 진공 차단기의 구동 메커니즘으로 영구자석형 조작기(PMA)가 널리 사용되고 있다. 이는 모터 스프링이나 유압 및 공압식 등과 같은 기계식 메커니즘에 비해 성능과 신뢰성에서 우수함을 인정받고 있다. 그러나 기존 영구자석형 조작기에서는 가동자와 영구 자석 사이의 큰 마찰력으로 인한 에너지 손실과 차단부와의 연결 로드에서의 기계적 고장 및 파손이 유발될 수 있다. 본 논문에서는 가동자의 로드에 베어링 타입의 부싱을 장착한 모델을 제안함으로써 이 문제를 해결하고자 한다. 부싱을 이용하여 영구 자석과 가동자 사이의 공극을 확보함으로써 마찰을 감소시키고 기계적 안정성 및 동작 특성 향상을 기대할 수 있다. 유한요소법(FEM)과 시간차분법(TDM)을 이용하여 제안된 모델의 동작 특성을 해석하였고, 이를 기존 모델의 특성과 비교하여 그 우수성을 검증한다.

  • PDF

Grasping Impact-Improvement of Robot Hands using Proximate Sensor (근접 센서를 이용한 로봇 손의 파지 충격 개선)

  • Hong, Yeh-Sun;Chin, Seong-Mu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.42-48
    • /
    • 1999
  • A control method for a robot hand grasping a object in a partially unknown environment will be proposed, where a proximate sensor detecting the distance between the fingertip and object was used. Particularly, the finger joints were driven servo-pneumatically in this study. Based on the proximate sensor signal the finger motion controller could plan the grasping process divided in three phases ; fast aproach, slow transitional contact and contact force control. That is, the fingertip approached to the object with full speed, until the output signal of the proximate sensor began to change. Within the perating range of the proximate sensor, the finger joint was moved by a state-variable feedback position controller in order to obtain a smooth contact with the object. The contact force of fingertip was then controlled using the blocked-line pressure sensitivity of the flow control servovalve for finger joint control. In this way, the grasping impact could be reduced without reducing the object approaching speed. The performance of the proposed grasping method was experimentally compared with that of a open loop-controlled one.

  • PDF

Experimental Study on the Movement of Pneumatic Actuating Mechanism for Self-Propelling Endoscope (자율주행 내시경을 위한 공압 구동장치의 이동특성에 관한 실험적 연구)

  • Lim, Young-Mo;Park, Ji-Sang;Kim, Byung-Kyu;Park, Jong-Oh;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.194-199
    • /
    • 2001
  • In this paper, we propose a new locomotive mechanism using impulsive force for microcapsule-type endoscope. It has the compact size for movement in the colon and actuating mechanisms for hi-directional movement. The actuating mechanism resembles a pneumatic cylinder and consists of body, inertia mass(piston). spring. pneumatic source and calve. When valve is ON, the pneumatic impulsive force between piston and body drives them in two opposite direction. As the air in the body is passed away, the contrary movements are occurred by spring reaction. Therefore, the direction of body's motion is determined by the relative magnitude of two opposite impulsive forces, i.e., pneumatic and spring force. The effect of two impulsive forces can simply be controlled by On-Off time of solenoid valve.

  • PDF

Study for the Development of a Main Oxidizer Shut-off Valve for Liquid Rocket Engines (발사체 연소기용 산화제 개폐밸브의 핵심요소 기술 개발)

  • Kim, Dohyung;Hong, Moongeun;Park, Jaesung;Lee, Soo Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.113-119
    • /
    • 2013
  • A main oxidizer shut-off valve (MOV) controls the supply of cryogenic liquid oxygen to the combustion chamber of liquid rocket engines by on/off operations. The main subjects to be introduced are not only the valve transient response during valve on/off procedures but also the characteristics of pneumatic and seat/poppet parts as core technologies in the development of the MOV, which is expected to be adopted for the Korea Space Launch Vehicle II. It is shown that the analytical prediction of the transient valve travel is in good agreement with experimental results. Friction and elastic forces on the valve moving part are quantitatively evaluated by structural analysis.

The Feasibility of the DKUH-75 Left Ventricular Assist Device for Acute Cardiogenic Shock in Pigs (돼지의 급성 심인성 쇼크 모델에서 DKUH-75 좌심실보조키의 유용성에 관한 연구)

  • Park, Seong-Sik
    • Journal of Chest Surgery
    • /
    • v.40 no.3 s.272
    • /
    • pp.168-179
    • /
    • 2007
  • Background: The recent trend of an increasing number of patients with acute cardiogenic shock or chronic congestive heart failure following myocardial infarction, as well as the considerable number who can not be weaned from cardiopulmonary bypass after open heart surgery, call for immediate efforts to develop affordable ventricular assist devices that are suitable for the Korean physique. Recently, a pneumatic pulsatile ventricular assist device (VAD), named DKUH-75, has been developed by the Department of Biomedical Engineering, in collaboration with the Department of Thoracic and Cardiovascular Surgery of Dankook University College of Medicine. The feasibility of the DKUH-75 VAD was evaluated on the bases of common hemodynamic variables and echocardiographic measurements in pigs, which are subjected to an acute cardiogenic shock state following myocardial infarction, using a novel coronary artery ligation method employing the ischemic preconditioning concept. Material and Method: Acute cardiogenic shock was induced in 10 Yorkshire Landrace Duroc strain pigs by ligating the left anterior descending coronary artery via an ischemic preconditioning process. The hemodynamic variables were monitored, with epicardial echocardiographic measurements performed before and one hour after the ligation. The DKUH-75 VAD was implanted into 5 pigs one hour after the onset of the shock. The hemodynamic variables and echocardiographic measurements were taken one hour after installation of the VAD. Result: The systolic, diastolic and mean systemic arterial pressures were significantly decreased in all the experimental animals one hour after the ligation. The systolic, diastolic and mean pulmonary arterial pressures were increased (Eds note: this completely contradicts the preceding statement? However, if you mean the non-experimental animals this should be stated?). The left ventricular end diastolic pressure (LVEDP) was increased, but the cardiac index decreased, An increase in the left ventricular end systolic dimension and decreases in the fractional shortening and ejection fraction were observed all animals one hour after the coronary artery ligation. In all 5 of the VAD implanted pigs, the systolic and mean systemic arterial pressures were increased, and the pulmonary arterial pressures decreased one hour after the implantation; the LVEDP decreased, but the cardiac index was significantly increased, In the echocardiographic measurements, the left ventricular end systolic dimension decreased after the implantation of the VAD, but the fractional shortening and ejection fraction significantly increased. Conclusion: Significant improvements in the hemodynamic variables and echocardiographic measurements were observed in the 5 VAD implanted animals one hour after installation, which had been subjected to an acute cardiogenic shock state by ligation of the coronary artery, indicating that the DKUH-75 VAD could help in the recovery of the myocardial function. This suggests that the DKUH-75 VAD is feasible in the short term in relation to an acute cardiogenic shock state due to myocardial infarction.

Development of a Pneumatic Actuation System Real-Time Simulator Using a DSP Board and PC (DSP 카드 및 PC에 의한 공압구동장치의 실시간 모의시험기 개발)

  • Lee, Seong-Rae;Shin, Hyo-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.320-326
    • /
    • 2000
  • The real-time simulator of a pneumatic actuation system that is composed of differential PWM signal generator, charge solenoid valve, discharge solenoid valve, actuator, load, and rotational potentiometer is developed using a DSP board and a PC. The simulator receives the control signals from the external controller through the A/D converter, updates the state and output variables of the Pneumatic actuation system responding to the input signals every sampling time, and sends out the output signals through the D/A converter in real time. The user can observe the displacements, velocities, pressures, and mass flows representing the operation of pneumatic actuation system through the PC monitor in real time. Also the user can see the moving images between the pistons and rotating arm realistically in real time. The accuracy of the real-time simulator is verified by the good agreement of the real-time simulation results and the experimental results of the pneumatic actuation system.

  • PDF

A Design Method of Three-phase IPMSM and Clamping Force Control of EMB for High-speed Train (고속철도차량의 EMB 적용을 위한 3상 IPMSM의 설계 및 제동압부력 제어)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Kwak, Min-ho;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.578-585
    • /
    • 2018
  • This paper proposes a design method for a 3-phase interior permanent magnet synchronous motor (IPMSM) and clamping force control method for an electro-mechanical brake (EMB) using co-simulation for a high-speed train (HST). A traditional pneumatic brake system needs much space for the compressor, brake reservoir, and air pipe. However, an EMB system uses up to 50% less space due to the use of a motor and electric wires for controlling the brake caliper. In addition, it can reduce the latency time for brake control because of the fast response and precise control. A train that has many brakes is advantageous for safety because of the control by sharing the braking force. In this paper, a driving method for a cam-shaft-type EMB is modeled. It is different from the ball-screw-type brakes that are widely used in automobiles. In addition, a co-simulation method is proposed using JMAG and Matlab/Simulink. The IPMSM was designed and analyzed with the JMAG tool, and the control system was simulated using Matlab/Simulink. The effectiveness of the co-simulation results of the mechanical clamping force and braking force was verified by comparison with the clamping force specifications of a HEMU-430X HST.

A Evaluation of Emergency Braking Performance for Electro Mechanical Brake using Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기를 적용한 전기기계식 제동장치의 비상제동 성능평가)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Park, Joon-Hyuk;Kim, Seog-Won;Kim, Sang-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.170-177
    • /
    • 2020
  • This study examined the clamping force control method and the braking performance test results of an electromechanical brake (EMB) using braking test equipment. Most of the studies related to EMBs have been carried out in the automotive field, dealing mainly with the static test results for various control methods. On the other hand, this study performed a dynamic performance evaluation. The three-phase interior permanent magnet synchronous motor (IPMSM) was applied to drive the actuator of the EMB, and the analysis was verified by JMAG(Ver. 18.0), which is finite element method (FEM) software. The current control, speed control, and position control were used for clamping force control of the EMB, and the maximum torque per ampere (MTPA) control was applied to the current controller for efficient control. The EMB's emergency braking deceleration performance was tested in the same way as conventional pneumatic brake systems when the wheel of a train rotates at 110 km/h, 230 km/h, and 300 km/h. The emergency braking time, with the wheel stopped completely at the maximum rotational speed, was approximately 73 seconds. The similarity of the braking time and deceleration pattern was verified through a comparison with the performance test results of the pneumatic brake system applied to the next generation high-speed railway vehicle (HEMU-430X).

Study on Model Identification and Pre-Differential 2-DOF PID Flow Control Algorithm for Cooling Processes (냉각 프로세서의 모델규명 및 선행미분형 2 자유도 PID 유량 제어 알고리즘에 관한 연구)

  • Hwang, I-Cheol;Park, Cheol-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1917-1923
    • /
    • 2010
  • This study focuses on model identification and a 2-DOF PID control algorithm for cooling processes; a pneumatic butterfly-type control valve is used for this purpose. The mathematical model is a transfer function composed of a time delay and a second-order delay system. The control valve is identified as a first-order delay system with a time delay and included in the controlled plant. From the experimental data sets for a demo plant, the model parameters are identified, and the 2-DOF PID control gains are analytically derived by Kitamori's method. We show via a computer simulation and an experimental test that the performance of the proposed 2-DOF PID control system is better than that of a conventional 1-DOF PID control system.