• Title/Summary/Keyword: 공압실린더

Search Result 52, Processing Time 0.025 seconds

Development of Pneumatic Servo Actuator for the Energy saving system (에너지 절약 시스템 공압 서보 액추에이터 개발)

  • Bae, Sung-Woo;Kim, Dong-Soo;Kim, Myoung-Sub
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1428-1432
    • /
    • 2007
  • The object of this paper is development of pneumatic servo actuator technique for energy saving type. In this paper, consist of pneumatic servo actuator technique is pneumatic servo valve, pneumatic motor and cylinder. This technique applied a automobile, aerospace engineering, a ship, defence industry and industrial machine because it have high response, high speed, high precision control, low friction etc., compare with previously technique. But it depend on import the whole quantity. So this study, suggest that through the development of servo actuator applicable the use of industrial field.

  • PDF

The Precision Position Control of the Pneumatic Rodless Cylinder Using Recurrent Neural Networks (리커런트 신경회로망을 이용한 공압 로드레스 실린더의 정밀위치제어)

  • 노철하;김영식;김상희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.84-90
    • /
    • 2003
  • This paper develops a control method that is composed of the proportional control algorithm and the learning algorithm based on the recurrent neural networks (RNN) for the position control of a pneumatic rodless cylinder. The proportional control algorithm is suggested for the modeled pneumatic system, which is obtained easily simplifying the system, and the RNN is suggested for the compensation of the modeling errors and uncertainties of the pneumatic system. In the proportional control, two zones are suggested in the phase plane. One is the transient zone for the smooth tracking and the other is the small movement zone for the accurate position control with eliminating the stick-slip phenomenon. The RNN is connected in parallel with the proportional control for the compensation of modeling errors and frictions, compressibilities, and parameter uncertainties in the pneumatic control system. This paper experimentally verifies the feasibility of the proposed control algorithm for such pneumatic systems.

Development of Transportational Guide System for Joining Small Wire with Gabion (개비온 끝단 소둔선 결합용 이송 가이드 장치 개발 연구)

  • Lee J.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.51-52
    • /
    • 2006
  • Gabion can be used for the purpose of preventing overflow of river and side loss of road. However the manufacturing process of the gabion is manually controlled especially to the joining process at the terminal part of gabion with small diameter wire. In this paper automatic feeding guide system was designed and fabricated to make automation. The fabricated system was tested in the factory level. Pneumatic system was considered as the main idea of the feeding system. 3/2-way and 5/2-way manual control valve, eight double-acting cylinders were used. Based on the theoretical simulation and actual test the fabricated system was well controlled. The system was applied to the patent.

  • PDF

Simulation Study on Dynamic Analysis of Spring Type Needle Valve to Absorb Surge Pressure in Pneumatic Cushion Cylinder (공압 쿠션 실린더의 충격압 흡수를 위한 스프링형 니들밸브의 동특성에 관한 연구)

  • Lee J.G.;Xiaofei Qin;Lee J.;Lee J.C.;Shin H.M.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • The purpose of this study is to find the effective dynamic characteristics of an improved pneumatic cushion cylinder with a spring type needle valve. The dynamic model represented the peak pressure control method when the pneumatic cushion cylinder is moving forward or backward in the horizontal direction. It was found from the simulation results that the peak pressure in the cushion chamber is affected by the spring, which helps to understand the performance of the pneumatic cushion cylinder and to improve or design a better cushion needle valve component. From the simulation results, the stability of pneumatic cushion cylinder with a spring type needle valve was superior and its cushion capability was also better than that without the spring.

  • PDF

Theoretical and Computational Analyses of Bernoulli Levitation Flows (베르누이 부상유동의 이론해석 및 수치해석 연구)

  • Nam, Jong Soon;Kim, Gyu Wan;Kim, Jin Hyeon;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.629-636
    • /
    • 2013
  • Pneumatic levitation is based upon Bernoulli's principle. However, this method is known to require a large gas flow rate that can lead to an increase in the cost of products. In this case, the gas flow rate should be increased, and the compressible effects of the gas may be of practical importance. In the present study, a computational fluid dynamics method has been used to obtain insights into Bernoulli levitation flows. Three-dimensional compressible Navier-Stokes equations in combination with the SST k-${\omega}$ turbulence model were solved using a fully implicit finite volume scheme. The gas flow rate, workpiece diameter,and clearance gap between the workpiece and the circular cylinder were varied to investigate the flow characteristics inside. It is known that there is an optimal clearance gap for the lifting force and that increasing the supply gas flow rate results in a larger lifting force.

Development of a Pneumatically Driven 6 DOF Driving Simulator (공기압 구동식 6 DOF 드라이빙 시뮬레이터의 개발)

  • Kim, Geun-Mook;Kang, E-Sok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6090-6097
    • /
    • 2013
  • A pneumatically-driven driving simulator that provides a realistic representation of the driving environment was developed. The motion platform for the driving simulator is a mechatronic device that gives a driver the realistic feeling of an actual vehicle. The cost of the motion platform comprises the largest part of the expenses in developing a driving simulator. In this project, to develop a low-cost motion platform, the self-built motion platform based on the Stewart platform configuration that is constructed by six pneumatic cylinders was used as its actuator. The Stewart platform that moves in response to the operating signals of the joystick showed satisfactory tracking performance. We confirmed the possibility of the driving simulator using rFactor that is a commercially available racing game software.

Development of O-Ring Measurement Systems of Muscular Meridians for objectification of Constitutional Diagnosis (체질 진단의 객관화를 위한 O-Ring 경근 계측시스템의 개발)

  • 정동명
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.555-561
    • /
    • 1995
  • In this paper, the O-Ring Measurement System (O-R MS) has been designed to supplement such subectivity and apply to the diagnosis by constitution. A single chip microprocessor of Intel MCS-51 family has been used to control the O-R MS and process data with real time, and the O-R MS could measure the minute muscular strength, expanded width between fingers, and time of the measurement. Therefore the objective constitutional diagnosis is possible by the O-R MS. As a clinical testing for estimating credibility of O-R MS, the acupuncture points representing the constitution has been stimulated using a semiconductor laser stimulator and measure the muscular strength by the O-R MS. The result of clinical testing has been shown that the constitutional diagnosis with the O-R MS is proved highly precision of 96% and it is expected that the O-R MS can be used practically for the objective constitutional diagnosis.

  • PDF

Transfer Force Characteristics of Seedling Bed Transfer Equipment Using Pneumatic Cylinder for Automation of Plant Factory (식물공장 자동화를 위한 공압 실린더를 이용한 육묘베드 이송장치의 이송력 특성)

  • Min, Young-Bong;Park, Sang-Min;Lee, Gong-In;Kim, Dong-Ouk;Kang, Dong-Hyun;Moon, Sung-Dong
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.155-165
    • /
    • 2012
  • This study was performed to offer the data for design of the seedling bed transfer equipment to make the automation of working process in a plant factory. The seedling bed transfer equipment pushing the seedling bed with bearing wheels on the rail for interconnecting each working process by a pneumatic cylinder was made and examined. The examined transfer force to push the seedling bed with a weight of 178.9 N by the pneumatic cylinder with length of 60 cm and section area of 5 $cm^2$ was measured by experiments. The examined transfer forces was compared with theoretical ones calculated by the theoretical formula derived from dynamic system analysis according to the number of the seedling bed and pushing speed of the pneumatic cylinder head at no load. The transfer function of the equipment with the input variable as the pushing speed $V_{h0}$(m/s) and the output variable as the transfer force f(t)(N) was represented as $F(s)=(V_{h0}/k)(s+B/M)/(s(s^2+Bs/M+1/(kM))$ where M(kg), k(m/N) and B(Ns/m) are the mass of the bed, the compression coefficient of the pneumatic cylinder and the dynamic friction coefficient between the seedling bed and the rail, respectively. The examined transfer force curves and the theoretical ones were represented similar wave forms as to use the theoretical formular to design the device for the seedling bed transfer. The condition of no vibration of the transfer force curve was $kB^2>4M$. The condition of transferring the bed by the repeatable impact and vibration force according to difference of transfer distance of the pneumatic cylinder head from that of the bed was as $Ce^{-\frac{3{\pi}D}{2\omega}}<-1$, where ${\omega}=\sqrt{\frac{1}{kM}-\frac{B^2}{4M^2}}$, $C=\{\frac{\frac{B}{2M}-\frac{1}{kB}}{\omega}\}$, $D=\frac{B}{2M}$. The examined mean peak transfer force represented 4 times of the stead state transfer force. Therefore it seemed that the transfer force of the pneumatic cylinder required for design of the push device was 4Bv where v is the pushing speed.

Structural Analysis of Power Transmission Mechanism of Electro-Mechanical Brake Device for High Speed Train (고속열차용 전기기계식 제동장치의 동력전달 기구물에 대한 구조해석)

  • Oh, Hyuck Keun;Beak, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.237-246
    • /
    • 2019
  • The Electro-Mechanical Brake (EMB) is the next generation braking system for automobiles and railway vehicles. Current brake systems for high-speed trains generate a braking force using a pneumatic cylinder, but EMB systems produce that force through a combination of an electric motor and a gear. In this study, an EMB operation mechanism capable of generating a high braking force was proposed, and structural and vibration analyses of the gears and shafts, which are the core parts of the mechanisms, were performed. Dynamic structural analysis confirmed that the maximum stress in the analysis model was within the yield strength of the material. In addition, the design that maximizes the diameter of the motor shaft was found to be advantageous in strength, and large shear stress could be generated in the bolt fixing the gear and eccentric shaft. In addition, a test apparatus that can reproduce the mechanism of the analytical model was fabricated to measure the strain of the fixed bolt part, which is the most vulnerable part. The strain measurement results showed that the error between the analysis and measurement was within 10%, which could verify the accuracy of the analytical model.

Fatigue Analysis for Electro-Mechanical Brake Caliper based on Eccentric Rotating Shaft (편심회전축 기반의 전기기계식 제동장치의 피로수명 해석)

  • Oh, Hyuck Keun;Beak, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.596-603
    • /
    • 2020
  • 'Electro-Mechanical Brake (EMB) is a novel braking system for automobiles and railway vehicles, and research in this area is actively underway. The current braking system for railway vehicles generates a braking force using a pneumatic cylinder, but the EMB system generates the force through a combination of an electric motor and gears. In this study, the design of an EMB system that meets the domestic standards was conducted through the finite element modeling and fatigue analysis of an eccentric rotating shaft-based EMB system capable of generating a high clamping force. At this time, to improve the accuracy of fatigue analysis, three types of fatigue test specimens, which were subjected to the same heat treatment as the materials used in the prototype, were produced, and the fatigue tests were performed for each material. The fatigue properties (S-N curves) were obtained from the fatigue test results for each material and reflected in the analysis model. The results of fatigue analysis confirmed that the design of the EMB prototype could satisfy the maximum commercial braking/relaxation of 530,000 times, which was the endurance life condition for domestic railway vehicles. In addition, based on this design, a prototype will be manufactured, and endurance testing will be completed to demonstrate the durability characteristics of the developed prototype.