• Title/Summary/Keyword: 공선성

Search Result 161, Processing Time 0.03 seconds

The Effect of Network Closure and Structural Hole in Technological Knowledge Exchange on Radical Innovation (기술지식 교류 네트워크의 네트워크 폐쇄와 구조적 공백이 급진적 혁신에 미치는 영향)

  • Ahn, Jae-Gwang;Kim, Jin-Han
    • Journal of Digital Convergence
    • /
    • v.16 no.4
    • /
    • pp.95-105
    • /
    • 2018
  • This study empirically test the roles of network closure and structural hole on radical innovation in technological knowledge exchange network in Gumi cluster. In doing so, we build 2,550 firm network, transforming association*firm(2-mode) to firm*firm(1-mode) network data. In addition, in order to investigate firms' attributes, we conduct survey for 101 firms in Gumi cluster using random sampling, and finally collect 86 firm samples. For analysis, we use ridge regression since network density and efficiency, indices of network closure and structural hole respectively, has a high level of multicollinearity. The findings show that structural hole has a significant and positive impact on radical innovation, but network closure has a significant and negative impact on radical innovation. This study contributes to present an empirical evidence of debate on network closure and structural hole based on past conceptual discussions and literature review and further goes a long way towards strategy formulation to establish social capital in accomplishing radical innovation. Further research is required that pays closer attention to features of technological knowledge, innovation types and interaction between network closure and structural hole, directing efforts to structural characteristics of various networks.

A Suggestion of the Direction of Construction Disaster Document Management through Text Data Classification Model based on Deep Learning (딥러닝 기반 분류 모델의 성능 분석을 통한 건설 재해사례 텍스트 데이터의 효율적 관리방향 제안)

  • Kim, Hayoung;Jang, YeEun;Kang, HyunBin;Son, JeongWook;Yi, June-Seong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.5
    • /
    • pp.73-85
    • /
    • 2021
  • This study proposes an efficient management direction for Korean construction accident cases through a deep learning-based text data classification model. A deep learning model was developed, which categorizes five categories of construction accidents: fall, electric shock, flying object, collapse, and narrowness, which are representative accident types of KOSHA. After initial model tests, the classification accuracy of fall disasters was relatively high, while other types were classified as fall disasters. Through these results, it was analyzed that 1) specific accident-causing behavior, 2) similar sentence structure, and 3) complex accidents corresponding to multiple types affect the results. Two accuracy improvement experiments were then conducted: 1) reclassification, 2) elimination. As a result, the classification performance improved with 185.7% when eliminating complex accidents. Through this, the multicollinearity of complex accidents, including the contents of multiple accident types, was resolved. In conclusion, this study suggests the necessity to independently manage complex accidents while preparing a system to describe the situation of future accidents in detail.

Effects of Korean Elder's Four Major Pains on Suicidal Thought Mediated by Depression: Focused on Gyungrodang Users (노인의 사중고(四重苦)가 우울을 매개로 자살생각에 미치는 영향: 경로당 이용자를 중심으로)

  • Shin, Hakgene
    • 한국노년학
    • /
    • v.31 no.3
    • /
    • pp.653-672
    • /
    • 2011
  • The present study empirically confirmed Korean elder's four major pains consisted of poverty, disease, role loss, loneliness and investigated the mediating role of depression between the four major pains and the elder's suicidal thought. To investigate the cause and effect of factors, we conveniently collected 309 samples from 16 Gyungrodangs evenly located in Jeonju and 291 samples, survived the data cleaning such as missing values, outliers, normality and covariance conditions, were analyzed by frequency, factor analysis, reliability, confirmatory factor analysis and structural model analysis. Followed were the selected contributions of the present study. First, the constructs of four major pains such as poverty, disease, role loss, loneliness were predictors of suicidal thought mediated by depression. Second, the elder's poverty, that was the heaviest factor of the four major pain constructs, was a predictor of role loss leading to loneliness. Third, four major pains were predictors of the elder's depression. Note that poverty were not direct but indirect predictor of depression. The present study confirmed the concept of four major pains. Also those who practice in the area of the elderly care should consider the four major pains as well as depression while intervening in the elderly's suicidal thought.

Application of Multiple Linear Regression Analysis and Tree-Based Machine Learning Techniques for Cutter Life Index(CLI) Prediction (커터수명지수 예측을 위한 다중선형회귀분석과 트리 기반 머신러닝 기법 적용)

  • Ju-Pyo Hong;Tae Young Ko
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.594-609
    • /
    • 2023
  • TBM (Tunnel Boring Machine) method is gaining popularity in urban and underwater tunneling projects due to its ability to ensure excavation face stability and minimize environmental impact. Among the prominent models for predicting disc cutter life, the NTNU model uses the Cutter Life Index(CLI) as a key parameter, but the complexity of testing procedures and rarity of equipment make measurement challenging. In this study, CLI was predicted using multiple linear regression analysis and tree-based machine learning techniques, utilizing rock properties. Through literature review, a database including rock uniaxial compressive strength, Brazilian tensile strength, equivalent quartz content, and Cerchar abrasivity index was built, and derived variables were added. The multiple linear regression analysis selected input variables based on statistical significance and multicollinearity, while the machine learning prediction model chose variables based on their importance. Dividing the data into 80% for training and 20% for testing, a comparative analysis of the predictive performance was conducted, and XGBoost was identified as the optimal model. The validity of the multiple linear regression and XGBoost models derived in this study was confirmed by comparing their predictive performance with prior research.

Estimation of Cerchar abrasivity index based on rock strength and petrological characteristics using linear regression and machine learning (선형회귀분석과 머신러닝을 이용한 암석의 강도 및 암석학적 특징 기반 세르샤 마모지수 추정)

  • Ju-Pyo Hong;Yun Seong Kang;Tae Young Ko
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.39-58
    • /
    • 2024
  • Tunnel Boring Machines (TBM) use multiple disc cutters to excavate tunnels through rock. These cutters wear out due to continuous contact and friction with the rock, leading to decreased cutting efficiency and reduced excavation performance. The rock's abrasivity significantly affects cutter wear, with highly abrasive rocks causing more wear and reducing the cutter's lifespan. The Cerchar Abrasivity Index (CAI) is a key indicator for assessing rock abrasivity, essential for predicting disc cutter life and performance. This study aims to develop a new method for effectively estimating CAI using rock strength, petrological characteristics, linear regression, and machine learning. A database including CAI, uniaxial compressive strength, Brazilian tensile strength, and equivalent quartz content was created, with additional derived variables. Variables for multiple linear regression were selected considering statistical significance and multicollinearity, while machine learning model inputs were chosen based on variable importance. Among the machine learning prediction models, the Gradient Boosting model showed the highest predictive performance. Finally, the predictive performance of the multiple linear regression analysis and the Gradient Boosting model derived in this study were compared with the CAI prediction models of previous studies to validate the results of this research.

Pseudo Image Composition and Sensor Models Analysis of SPOT Satellite Imagery of Non-Accessible Area (비접근 지역에 대한 SPOT 위성영상의 Pseudo영상 구성 및 센서모델 분석)

  • 방기인;조우석
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.140-148
    • /
    • 2001
  • The satellite sensor model is typically established using ground control points acquired by ground survey Of existing topographic maps. In some cases where the targeted area can't be accessed and the topographic maps are not available, it is difficult to obtain ground control points so that geospatial information could not be obtained from satellite image. The paper presents several satellite sensor models and satellite image decomposition methods for non-accessible area where ground control points can hardly acquired in conventional ways. First, 10 different satellite sensor models, which were extended from collinearity condition equations, were developed and then the behavior of each sensor model was investigated. Secondly, satellite images were decomposed and also pseudo images were generated. The satellite sensor model extended from collinearity equations was represented by the six exterior orientation parameters in 1$^{st}$, 2$^{nd}$ and 3$^{rd}$ order function of satellite image row. Among them, the rotational angle parameters such as $\omega$(omega) and $\phi$(phi) correlated highly with positional parameters could be assigned to constant values. For non-accessible area, satellite images were decomposed, which means that two consecutive images were combined as one image. The combined image consists of one satellite image with ground control points and the other without ground control points. In addition, a pseudo image which is an imaginary image, was prepared from one satellite image with ground control points and the other without ground control points. In other words, the pseudo image is an arbitrary image bridging two consecutive images. For the experiments, SPOT satellite images exposed to the similar area in different pass were used. Conclusively, it was found that 10 different satellite sensor models and 5 different decomposed methods delivered different levels of accuracy. Among them, the satellite camera model with 1$^{st}$ order function of image row for positional orientation parameters and rotational angle parameter of kappa, and constant rotational angle parameter omega and phi provided the best 60m maximum error at check point with pseudo images arrangement.

  • PDF

Pseudo Image Composition and Sensor Models Analysis of SPOT Satellite Imagery for Inaccessible Area (비접근 지역에 대한 SPOT 위성영상의 Pseudo영상 구성 및 센서모델 분석)

  • 방기인;조우석
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.33-44
    • /
    • 2001
  • The paper presents several satellite models and satellite image decomposition methods for inaccessible area where ground control points can hardly acquired in conventional ways. First, 10 different satellite sensor models, which were extended from collinearity condition equations, were developed and then behavior of each sensor model was investigated. Secondly, satellite images were decomposed and also pseudo images were generated. The satellite sensor model extended from collinearity equations was represented by the six exterior orientation parameters in $1^{st}$, $2^{nd}$ and $3^{rd}$ order function of satellite image row. Among them, the rotational angle parameters such as $\omega$(omega) and $\Phi$(phi) correlated highly with positional parameters could be assigned to constant values. For inaccessible area, satellite images were decomposed, which means that two consecutive images were combined as one image, The combined image consists of one satellite image with ground control points and the other without ground control points. In addition, a pseudo image which is an imaginary image, was prepared from one satellite image with ground control points and the other without ground control points. In other words, the pseudo image is an arbitrary image bridging two consecutive images. For the experiments, SPOT satellite images exposed to the similar area in different pass were used. Conclusively, it was found that 10 different satellite sensor models and 5 different decomposed methods delivered different levels of accuracy. Among them, the satellite camera model with 1st order function of image row for positional orientation parameters and rotational angle parameter of kappa, and constant rotational angle parameter omega and phi provided the best 60m maximum error at check point with pseudo images arrangement.

Analysis of Determinant Factors of Apartment Price Considering the Spatial Distribution and Housing Attributes (공간지리적 요인과 주거특성을 고려한 공동주택 가격결정 분석)

  • Moon, Tae-Heon;Jeong, Yoon-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.68-79
    • /
    • 2008
  • Because local cities are different from large cities, they need to reflect their own characteristics of housing market. Thus in order to obtain useful implications for the establishing sound housing market in Jinju City, this paper investigated the characteristics of spatial distribution and determinant factors that affect apartment price in Jinju City. GIS representation of the apartments showed that most of old and small apartments were built in 'land readjustment project' areas executed in 1970s. On the contrary, new and large scale apartment complexes were built quite recently and distributed in the western and southern parts of the city. Next, in order to examine the factors which affect apartment price, this paper subtracted firstly several variables from the related studies. However in order to avoid multi-colinearity, variables were summarized by means of factor analysis. Then, setting apartment price as a dependant variable, 12 hedonic price models were established with 33 independent variables. As results, building age, floor area, accessibility to university and hospital, accessibility to arterial road, and stair-type building were turned out to be significant. These results will be used in making the supply and allocation plan of urban facilities and housing. Finally as conclusions this paper emphasized the need of periodic analysis of local housing market and establishing detailed housing information systems.

  • PDF

A Model-Fitting Approach of External Force on Electric Pole Using Generalized Additive Model (일반화 가법 모형을 이용한 전주 외력 모델링)

  • Park, Chul Young;Shin, Chang Sun;Park, Myung Hye;Lee, Seung Bae;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.11
    • /
    • pp.445-452
    • /
    • 2017
  • Electric pole is a supporting beam used for power transmission/distribution which accelerometer are used for measuring a external force. The meteorological condition has various effects on the external forces of electric pole. One of them is the elasticity change of the aerial wire. It is very important to perform modelling. The acceleration sensor is converted into a pitch and a roll angle. The meteorological condition has a high correlation between variables, and selecting significant explanatory variables for modeling may result in the problem of over-fitting. We constructed high deviance explained model considering multicollinearity using the Generalized Additive Model which is one of the machine learning methods. As a result of the Variation Inflation Factor Test, we selected and fitted the significant variable as temperature, precipitation, wind speed, wind direction, air pressure, dewpoint, hours of daylight and cloud cover. It was noted that the Hours of daylight, cloud cover and air pressure has high explained value in explonatory variable. The average coefficient of determination (R-Squared) of the Generalized Additive Model was 0.69. The constructed model can help to predict the influence on the external forces of electric pole, and contribute to the purpose of securing safety on utility pole.

The Effect that Familism Recognized by College Students have on Anxiety Over Aaging and Elderly Group's Attitude: Mediation Effect of a Sense of Filial Duty (대학생이 인식하는 가족주의가 노화불안과 노인연령집단 태도에 미치는 영향 : 효 의식의 매개효과)

  • Kim, Jeonghui;Lim, Byungwoo
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.2
    • /
    • pp.595-611
    • /
    • 2017
  • This study aims to verify the effect that familism recognized by college students has on anxiety over aging and elderly group's attitude as well as mediation effect of a sense of filial duty. For study analysis, 200 college students studying at colleges in Sungnam, Anyang and Incheon in Gyeonggido as well as in Seoul were surveyed using structured questionnaires from May 2, 2016 to June 28, 2016. All of 166 responses except for 34 incomplete ones were used for analysis. Firstly, analysis result confirmed correlation among familism, anxiety over aging, elderly group's attitude and variables in sense of filial duty. Multicollinearity between variables were confirmed using VIF values. Secondly, the effect that familism recognized by college students has on anxiety over aging and elderly group's attitude was confirmed. Thirdly, partial mediation effect of a sense of filial duty was confirmed in the effect that familism recognized by college students has on anxiety over aging. In addition, Sobel Test suggested by Sobel was conducted to verify significance of the mediation effect. This study suggests intervention in and practice of social welfare to promote familism and a sense of filial duty between college students and elderly generation in this era of nuclear family and aging society as well as reduction of anxiety over aging on the part of college students, based on the verified mediation effect of a sense of filial duty in the effect that familism recognized by college students in aging society has on anxiety over aging.