• Title/Summary/Keyword: 공사현장정보관리

Search Result 256, Processing Time 0.027 seconds

BIM-Based Quantity Takeoff and Cost Estimation Guidelines for Reinforced Concrete Structures (철근콘크리트골조 BIM기반 수량산출 및 견적 가이드라인 수립)

  • Joo, Seon U;Kim, Chee-Kyeong;Kim, Si-Uk;Noh, Jun-Oh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.567-576
    • /
    • 2017
  • The object of this research is an establishment of BIM-based quantity takeoff(QTO) and cost estimation guidelines for reinforcement concrete structures focused on improvement of field applicability in transition period from 2D drawing-based environment to 3D BIM-based environment. Preliminary studies on existing guidelines and standards for BIM modeling, QTO and cost estimation of reinforcement concrete structures are performed, and then a standardization of BIM-based cost estimation process is proposed through comparative analysis between 2D drawing-based cost estimation process and 3D BIM-based. In addition, modeling, QTO, and cost estimation processes of cost-BIM model for RC structures are conducted. The contributions of this research and the guidelines suggested by this research are 1) lowering barriers to entity to the new BIM-based environment for small size companies, 2) reducing construction cost by a close estimate, 3) establishing the foundation for integrated management of informations through construction project life cycle, 4) and ultimately, developing the BIM ecosystems.

A Study on Risk Factor Identification by Specialty Construction Industry Sector through Construction Accident Cases : Focused on the Insurance Data of Specialty Construction Worker (건설재해사례 분석에 의한 전문건설업종별 위험요인 탐색 : 전문건설업 근로자 공제자료를 중심으로)

  • Lee, Young Jai;Kang, Seong Kyung;Yu, Hwan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.1
    • /
    • pp.45-63
    • /
    • 2019
  • The number of domestic construction company is expanding every year while the construction workers' exposure to disaster risk is increasing due to technological advancements and popularity of high-rise buildings. In particular, the industry faces greater fatalities and severe large scale accidents because of construction industry characteristics including influx of foreign workers with different language and culture, large number of aged workers, outsourcing, high place work, heavy machine construction. The construction industry is labor-intensive, which is to be completed under given timeline and consists of unique working environment with a lot of night shifts. In addition, when a fixed construction budget is not secured, there is less investment in safety management resulting in poor risk management at the construction site. Taking account that the construction industry has higher accident risk rate and fatality rate, risky and unique working environment, and various labor pool from foreign to aged workers, preemptive safety management through risk factor identification is a mandatory requirement for the construction industry and site. The study analyzes about 8,500 cases of construction accidents that occurred over the past 10 years and identified risk factor by construction industry sector to secure a systematic insight for risk management. Based on interrelation analysis between accident types, work types, original cause materials and assailing materials, there is correlation between each analysis factor and work industry. Especially for work types, there is great correlation between work tasks and industry type. For reinforced concrete and earthwork are among the most frequent types of accidents, and they are not only high in frequency of accidents, but also have a high risk in categories of occurrence.

Development of Freeway Incident Duration Prediction Models (고속도로 돌발상황 지속시간 예측모형 개발)

  • 신치현;김정훈
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.17-30
    • /
    • 2002
  • Incident duration prediction is one of the most important steps of the overall incident management process. An accurate and reliable estimate of the incident duration can be the main difference between an effective incident management operation and an unacceptable one since, without the knowledge of such time durations, traffic impact can not be estimated or calculated. This research presents several multiple linear regression models for incident duration prediction using data consisting of 384 incident cases. The main source of various incident cases was the Traffic Incident Reports filled out by the Motorist Assistant Units of the Korea Highway Corporation. The models were proposed separately according to the time of day(daytime vs. nighttime) and the fatality/injury incurred (fatality/injury vs. property damage only). Two models using an integrated dataset, one with an intercept and the other without it, were also calibrated and proposed for the generality of model application. Some findings are as follows ; ?Variables such as vehicle turnover, load spills, the number of heavy vehicles involved and the number of blocked lanes were found to significantly affect incident duration times. ?Models, however, tend to overestimate the duration times when a dummy variable, load spill, is used. It was simply because several of load spill incidents had excessively long clearance times. The precision was improved when load spills were further categorized into "small spills" and "large spills" based on the size of vehicles involved. ?Variables such as the number of vehicles involved and the number of blocked lanes found not significant when a regression model was calibrated with an intercept. whereas excluding the intercept from the model structure signifies those variables in a statistical sense.

Workflow Procedures and Applications in BIM-based Design for Safety (DfS) (BIM 기반 설계안전성검토의 업무 절차와 활용 방안에 관한 연구)

  • Jaewoong Hwang;Heetaek Yoon;Junhyun Bae;Youngkon Park
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.125-137
    • /
    • 2024
  • A conventional Design for Safety (DfS), introduced to eliminate potential hazards in the design phase proactively, has encountered persistent challenges, such as perfunctory risk assessments and hazard identifications based on 2D drawings and inefficient workflow processes. This study proposes a BIM-based approach to Design for Safety (DfS) to address the limitations of conventional methods, aiming to enhance efficiency and achieve practical safety management benefits. The proposed workflow process for BIM-based DfS has been refined and validated for on-site applicability through various case studies, including risk assessments during the design phase and field applications for safety management activities during the construction phase. Specifically, the critical process of risk assessment within the DfS methodology has also been transitioned to a BIM-based approach. This BIM-based risk assessment process has been evaluated through case studies, encompassing safety reviews for structural design, construction equipment operation, and construction methodology with sequence in design projects. Additionally, the proposed BIM-based DfS has demonstrated exceptional on-site applicability and efficiency, as validated by the application of a BIM deliverable embedded in DfS information for CDE-based daily activity briefing, VR-based safety training, AR-based mitigation measures inspections, and other safety management activities in the construction phase.

A Study on Integrating Wire & Wireless Communication Networks for Reducing Communication Costs in the National ITS Physical Architecture (통신비 절감을 위한 국가 ITS 물리 아키텍쳐 상의 유.무선통신망 통합에 관한 연구)

  • Lee, Bong-Gyou;Hong, In-Gi;Ryu, Seung-Ki;Moon, Hak-Yong
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.2 s.12
    • /
    • pp.77-84
    • /
    • 2004
  • The purpose of this study is to suggest an effective guideline for reducing communication costs and improving qualities of Intelligent Transport Systems (ITS) by totally or partially integrating wireless communication networks between equipments of ITS Centers and Roadside in the National ITS Physical Architecture. We analyzed wire and wireless communication networks such as wireless LAN and satellite communications in the National Highway Traffic Management System (NHTMS) for receiving and transmitting transportation data. Also, we analyzed operation and communication costs to find out right communication networks for ITS. The results of this study will be used to build and operate many other ITS systems including Korea Highway Corporation.

  • PDF

A Study on Optimal Inspection Interval for the Major Components of Construction Lift (건설용 리프트의 운행정보 및 고장데이터 분석을 통한 주요 부품별 점검주기 산출 연구)

  • Soh, Jiyune;Bae, Jaehoon;Han, Choonghee;Lee, Junbok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.3
    • /
    • pp.68-77
    • /
    • 2015
  • One of recent concerns for super-tall buildings is how to manage hoisting plans and equipment efficiently. Disasters are frequently occurred in relation to electromotive hoists and cranes which are commonly used in construction sites. For construction lifts, particularly, it is highly important to conduct regular inspections or prepare against breakdown in terms of safety. However, unfortunately the reality is that regular inspections are only flatly conducted according to operating hours only. A lift, whose life span is subject to the complicated considerations such as operating hours, loading condition, and the like of each component, is far too invalid as a means of maintenance. As a way to resolve this problem and improve its convenience and safety for users, this study intends to calculate individual inspection interval for the main components of lifts by measuring their actual operating hours with sensing technology and analyzing their historical data. The findings of study include calculation of inspection intervals for the main components of lifts and classification of components to check by the actual operating hours of lift (40, 90, 130, 400 hours), which are drawn up into tables. This will make an opportunity to suggest efficient maintenance measures by enabling prevention of safety accidents and enhancement of safety for workers. Also, it will lead to increasing productivity of works by eliminating sources of delaying the term due to the breakdown of lifts.

Development and Performance Evaluation of Multi-sensor Module for Use in Disaster Sites of Mobile Robot (조사로봇의 재난현장 활용을 위한 다중센서모듈 개발 및 성능평가에 관한 연구)

  • Jung, Yonghan;Hong, Junwooh;Han, Soohee;Shin, Dongyoon;Lim, Eontaek;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1827-1836
    • /
    • 2022
  • Disasters that occur unexpectedly are difficult to predict. In addition, the scale and damage are increasing compared to the past. Sometimes one disaster can develop into another disaster. Among the four stages of disaster management, search and rescue are carried out in the response stage when an emergency occurs. Therefore, personnel such as firefighters who are put into the scene are put in at a lot of risk. In this respect, in the initial response process at the disaster site, robots are a technology with high potential to reduce damage to human life and property. In addition, Light Detection And Ranging (LiDAR) can acquire a relatively wide range of 3D information using a laser. Due to its high accuracy and precision, it is a very useful sensor when considering the characteristics of a disaster site. Therefore, in this study, development and experiments were conducted so that the robot could perform real-time monitoring at the disaster site. Multi-sensor module was developed by combining LiDAR, Inertial Measurement Unit (IMU) sensor, and computing board. Then, this module was mounted on the robot, and a customized Simultaneous Localization and Mapping (SLAM) algorithm was developed. A method for stably mounting a multi-sensor module to a robot to maintain optimal accuracy at disaster sites was studied. And to check the performance of the module, SLAM was tested inside the disaster building, and various SLAM algorithms and distance comparisons were performed. As a result, PackSLAM developed in this study showed lower error compared to other algorithms, showing the possibility of application in disaster sites. In the future, in order to further enhance usability at disaster sites, various experiments will be conducted by establishing a rough terrain environment with many obstacles.

Estimation of Storage Capacity using Topographical Shape of Sand-bar and High Resolution Image in Urban Stream (도시하천의 지형태 자료와 영상정보를 이용한 수체적 시험평가)

  • Lee, Hyun Seok;Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.445-450
    • /
    • 2008
  • Recently, environmental and ecological approaches is in progress in urban stream, especially the guarantee of instream flow becomes very important. In this paper, it is suggested that water volume estimation method utilizing the topographical shape data obtained by field investigation and satellite image to manage the urban stream efficiently. The data obtained at Gap River is the study area are analysed and those results are as belows. First, surveying to investigate topographic shape characteristics of urban stream is carried out. In details, the gradient characteristics from water surface to bottom in case of sand area and in case of grass area are 0.013 and 0.065 respectively. In conclusion, the gradient characteristic of grass area is five times bigger than that of sand area. Besides, IKONOS image is classified by spectrum analysis and Minimum Distance Method and the sand area extraction method by the generalization method as Median filter is suggested to calculate water volume. Finally, mapping process on the sand area extracted from the topographical shape field data in river and satellite images is carried out by the GIS spatial analysis. And on the assumption that the water level was 1m at that time when satellite image was taken, the water volume was $225,258m^3$. It is clarified that the effect of water volume improvement was about 10.5% in comparison with water volume that had no consideration on the gradient characteristics of sand-bar.

A Framework of Automating Inspection Task Generation for Construction Projects (건축 시공단계 검측 업무 자동 생성을 위한 프레임워크 개발)

  • Jo, Seuckyeon;Lee, Jin Gang;Choi, Jaehyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.1
    • /
    • pp.40-50
    • /
    • 2023
  • Quality control (QC) is an essential work for the successful construction project execution. Recently, robust application of ICT to the QC tasks leads to utilizing innovative technologies and equipment. However, overall planing of QC works needs to take place before applying new technologies to each and individual QC task. The objectives of this research involve developing a database and an algorithm that identifies QC tasks and related information upfront. In addition, the researchers developed a methodology to generate inspection tasks in conjunction with construction work tasks. The Korean Ministry of Land and Transportation provides standard supervision checklists. They were classified based on criteria of inspection items, methods, period and the scope. Reinforced concrete work was selected as a case study for validation of the method. This framework can function when planing construction tasks with any type of planning tools and innovative technologies. The researchers expect this framework may contribute to various construction projects when developing QC plans and tasks with applicable technologies.

Problems and Improvement Measures for the transformation of World Geodetic System (지적공부의 세계측지계 변환에 따른 문제점 및 개선방안)

  • Kim, Geun-Bae;Jeong, Gu-Ha;Jeon, Jeong-Bae
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.2
    • /
    • pp.123-134
    • /
    • 2019
  • The introduction of the world geodetic reference system in cadastral sector can apply the international standardization of cadastral survey and can be the basis for the creation of new industries by merging with other industries based on spatial information. With the introduction of the world geodetic reference system, non-coincidence land may cause problems which are whether the cadastral record and the real estate register are not consistent, etc. This problem infringes on the protection of ownership of citizens suggested in the main purpose of 「Act On The Establishment, Management, Etc. Of Spatial Data」. We have analyzed at overlapping cases between private land and overlapping cases between national and public land and suggested institutional improvement measures to solve problems arising on the site. As a result, it will be necessary to introduce a transformation verification measure by the world geodetic reference system in order to assign a function as a cadastral records to mapping converted to the world geodetic reference system. It is also expected that the legal and institutional basis should be established for alert adjustment and positioning through verification measures. Finally, it is difficult to determine the transformation factor as the co-ordinates of common points also differ because survey results vary by work area. Therefore, it is deemed necessary to consider the requirement to use the cadastral measurement basis by the world geodetic reference system in 2021.