• Title/Summary/Keyword: 공비조성

Search Result 14, Processing Time 0.018 seconds

Selection of an Optimal Entrainer for Extractive Distillation of Azeotropic Acetone/Methanol System (Acetone/Methanol계 공비물의 추출증류를 위한 최적 Entrainer 선정)

  • Lee, JoonMan;Ahn, WonSool
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.539-546
    • /
    • 2008
  • A study on the selection of an optimal entrainer as the third component among water, aniline, 1,3-diethylbenzene, furfural, and MEK, for the extractive distillation of an azeotropic acetone/methanol system was performed using both the entrainer effect vapor-liquid equilibrium (VLE) and the relative volatility. In the case of water as the entrainer, a VLE curve without azeotropic point in the range of water composition from 0.3 up to 0.7 mole fraction could be obtained by both the experiment and the calculation using modified-UNIFAC model. For aniline and 1,3-diethylbenzene, however, VLE curve without azeotropic point could be obtained only at compositions above 0.7 mole fraction, which exhibited that they could be hardly utilized as the entrainer. Moreover, both furfural and MEK were verified to be improper entrainer since they formed an azeotropic phase. Relative volatility of water showed greater than 1.0 and increased with compositions, while those of the others decreased non-linearly, exhibiting that only water could be utilized as the proper entrainer for the extractive distillation of azeotropic acetone/methanol system.

Optimization Study for Pressure Swing Distillation Process for the Mixture of Isobutyl-Acetate and Isobutyl-Alcohol System (Isobutyl-Acetate와 Isobutyl-Alcohol 이성분계의 압력변환증류 공정 최적화 연구)

  • Cho, Sung Jin;Shin, Jae Sun;Choi, Suk Hoon;Lee, Euy Soo;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.307-313
    • /
    • 2014
  • In this study, an optimization process design has been performed to separate 99.9 mol% of Isobutyl Acetate from binary azeotropic mixture of Isobutyl Acetate and Isobutyl Alcohol system using a Pressure Swing Distillation (PSD). PSD is used to separate binary azeotropic mixtures using the difference between the relative volatilities and azeotropic compositions by changing the system pressure. Non-Random Two Liquid (NRTL) model for liquid phase and the Peng-Robinson equation for vapor phase are used. An optimization study for the reflux ratio and feed stage locations which minimize the total reboiler heat duties are studied. Since PSD process consists of two columns, i.e. high pressure and low pressure, the effect of column sequence on the optimum conditions is reported.

Simulation and Optimization Study on the Pressure Swing Distillation of Methyl ethyl ketone-Water System (Methyl ethyl ketone과 물 이성분계 혼합물의 압력변환 증류공정에 대한 전산모사 및 최적화에 대한 연구)

  • Noh, Sang-Gyun;Rho, Jae-Hyun;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3764-3773
    • /
    • 2012
  • In this study, modeling and optimization works were completed for the separation of 99.9 mol% of methyl ethyl ketone from water through a pressure-swing distillation process since the azeotropic composition varies very sensitively with the change of system pressure. PRO/II with PROVISION release 9.1 was used for the computer simulation and Wilson activity coefficient model was chosen as a modeling equation. A pressure-swing distillation process can be classified into a low-high pressure columns configuration and a high-low pressure columns configuration. In this work, each configurations were optimized for the minimization of steam consumptions, respectively and were compared.

Effect of Catholyte to Anolyte Amount Ratio on the Electrodialysis Cell Performance for HI Concentration (Anolyte와 Catholyte의 비율에 따른 HI 농축 전기투석 셀의 성능변화)

  • Kim, Chang-Hee;Cho, Won-Chul;Kang, Kyoung-Soo;Park, Chu-Sik;Bae, Ki-Kwang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.507-512
    • /
    • 2010
  • The effect of catholyte to anolyte amount ratio on the electrodialysis cell performance for HI concentration was investigated. For this purpose, the electrodialysis cell was assembled with Nafion 117 as PEM membrane and activated carbon fiber cloth as electrodes. The initial amount of catholyte was 310 g and that of anolyte varied from 1 to 3 of amount ratio. The calculated electro motive force (EMF) increased with time and the increment enhanced as the amount ratio of catholyte to anolyte decreased. The mole ratios of HI to $H_2O$ (HI molarity) in catholyte were almost the same and exceeded pseudo-azeotropic composition for all amount ratios after 2 h operation. The HI molarity continuously increased with time for 10 h operation. The mole ratio of $I_2$ to HI decreased in catholyte but increased in anolyte. The increment of mole ratio of $I_2$ to HI in anolyte rose as the amount ratio of catholyte to anolyte decreased. In case of 1:1 amount ratio, the cell operation was stopped for the safety at approximately 6 h operation, since the mole ratio of $I_2$ to HI reached solubility limit. The cell voltage of the electrodialysis cell increased with time and the rate of increase was high at low amount ratio. This suggests that the amount ratio of catholyte to anolyte not only crucially influences the cell voltage, but also cell operation condition.

Simulation Study of Methyl ethyl ketone-Cyclohexane Azeotrope on the Pressure-Swing Distillation (압력변환 증류공정을 이용한 Methyl Ethyl Ketone-Cyclohexane 공비혼합물의 전산모사)

  • Park, Hoey Kyung;Ahn, June-shu;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.708-715
    • /
    • 2016
  • The modelling and optimization of Methyl Ethyl Ketone (MEK)-Cyclohexane (CH) separation process were performed using pressure-swing distillation with a low-high pressure column and a high-low pressure column configuration. The optimization was performed for the number of theoretical stages, and the location of the feed tray of low column and high column to obtain high-purity MEK at the top. The total reboiler heat duty at the low-high pressure column configuration and high-low pressure column configuration were at 11.7667 Mkcal/h and at 10.3484 Mkcal/h, respectively. The results showed that total reboiler heat duty could be reduced to 12.05% using a high-low pressure column configuration.

Study on Scale-up of Electro-Electrodialysis [EED] Cell for HI Concentration (HI 농축을 위한 전해-전기투석 셀의 스케일-업에 관한 연구)

  • Lee, Sang-Ho;Hong, Seong-Dae;Kim, Jeong-Keun;Hwang, Gab-Jin;Moon, Il-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.458-463
    • /
    • 2007
  • An experimental study on scale-up of Electro-electrodialysis(EED) to increase the efficiency of HI decomposition section in the IS(Iodine-Sulfur) process was carried out. The EED stack extends the effective area of the membrane to 20 times of that formerly used in a single EED unit cell. The experiment was carried out using HIx solution($HI:H_2O:I_2=1:8.4{\sim}9:1.85{\sim}1.9$) at $100^{\circ}C$ and various solution flow rates of 20, 30, 40 and 50 cc/min. The increased HI molality in catholyte after one-pass throughout from the EED stack was 3 mol/kg-$H_2O$, 2.2 mol/kg-$H_2O$, 2 mol/kg-$H_2O$ and 1.37 mol/kg-$H_2O$ at 20, 30, 40 and 50 cc/min, respectively. These values satisfied the target of HI molality(the increase of HI molality: 2 mol/kg-$H_2O$) in the IS process for hydrogen production of 20 L/hr.

HI concentration by EED for the HI decomposition in IS process (IS 프로세스의 HI 분해반응공정을 위한 전해 - 전기투석(EED) HI 농축)

  • Hong, Seong-Dae;Kim, Jeong-Geun;Lee, Sang-Ho;Choi, Sang-Il;Bae, Ki-Kwang;Hwang, Gab-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.212-217
    • /
    • 2006
  • An experimental study on Electro-electrodialysis (EED) for IS (Iodine-Sulfur) process which is well known as hydrogen production system was carried out for the HI concentration from HIx (HI: $H_2O$ : $I_2$ = 1 : 5 : 1) solution. The polymer electrolyte membrane and the activated carbon cloth were adopted as a cation exchange membrane and electrode, respectively. In order to evaluate the temperature effect about HI concentration in fixed molar ratio, three case of temperature were selected to $60^{\circ}C$, $90^{\circ}C$ and $120^{\circ}C$. The electro-osmosis coefficient and transport number of proton have been changed from 1.95 to 1.21 (mol/Faraday) and 0.91 to 0.76, respectively as temperature increase from $60^{\circ}C$ to $120^{\circ}C$. It can be realized that the HI mole fraction in final stage of EED experiments already over the quasi-azeotrope composition.

Application of Energy-Efficient Distillation System in Ethanol Process (에너지 절약형 증류시스템의 에탄올 제조공정에의 응용)

  • Lee, Moon Yong;Kim, Young Han
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.892-897
    • /
    • 2008
  • A new ethanol dehydration process utilizing a thermally coupled distillation column is proposed to reduce the energy requirement of the existing dehydration processes. An entrainer of benzene is used in the proposed system having the column profile similar to the equilibrium composition profile for the maximum distillation column efficiency, and the feed composition is arranged to close to the boundary of different distillation regions. It is found that the proposed distillation system gives some 18% of energy saving over the existing process. In addition, design guidelines are suggested for other azeotropic distillation process.

Pervaporation Separation of Ethanol-Water Mixtures Using Nylon 4 and Its Blended Membranes (나일론 4와 이의 블렌드 막을 이용한 에탄올-물 혼합물의 투과 증발분리)

  • Rhim, Ji-Won;Huang, Robert Y.M.
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.791-797
    • /
    • 1993
  • The application of the pervaporation process in biotechnology is rapidly growing. A two stage pervaporation process can be applied to the downstream processing of ethanol fermentation. In this paper, the second stage process in which the water-ethanol composition was 50:50 wt.% was investigated in more detail by using Nylon 4 and its blended membranes containing poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA). Nylon 4 membranes were tested for compositions at 25, 30, and $35^{\circ}C$. Nylon 4 membranes had a separation factor of 4.18 with a permeability of $0.69kg/m^2hr$ at water-ethanol composition of 50:50 wt.%, while nylon 4-PVA blended membranes crosslinked by 5 Mrad gamma-ray irradiation showed a higher separation factor of 10.56 with permeability $0.55kg/m^2hr$ at the same composition. Nylon 4 also showed a high separation factor 27.8 at the ethanol-water azeotropic composition among the homopolymer membranes.

  • PDF

LLE of Solvent-Water-2-Propanol Ternary Systems (Solvent-water-2-propanol 삼성분계의 액-액평형)

  • Jeong, Sang-Hoon;Lee, Jin-Woo;Park, Dong-Won
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.653-659
    • /
    • 1997
  • Due to the rising cost of energy, new separation processes based on extraction are becoming more attractive than before. Thus, the need for calculating and predicting liquid-liquid equilibria(LLE) compositions has very much increased. The purpose of this study is to determine the binodal curves, tie line, plait point, distribution and selectivity for the ternary systems of 2-propanol-water with methyl ethyl ketone, methyl isobutyl ketone, ethylacetate, toluene and o-xylene as solvents at $25^{\circ}C$. And those tie line data were used to examine thermodynamic consistency. The experimental tie line data were correlated with NRTL and UNIQUAC models.

  • PDF