• Title/Summary/Keyword: 공력영향

Search Result 247, Processing Time 0.025 seconds

Influence of Rotating Wheel and Moving Ground Condition to Aerodynamic Performance of 3-Dimensional Automobile Configuration (돌아가는 바퀴 및 이동지면 조건이 3차원 자동차 형상의 공력성능에 미치는 영향에 관한 연구)

  • Kang, Seung-On;Jun, Sang-Ook;Park, Hoon-Il;Ku, Yo-Cheon;Kee, Jung-Do;Hong, Dong-Hee;Kim, Kyu-Hong;Lee, Dong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.100-107
    • /
    • 2010
  • This paper gives new conceptual descriptions of drag reduction mechanism owing to rotating wheel and moving ground condition when dealing with automotive aerodynamics. Using Computational Fluid Dynamics (CFD), flow simulation of three dimensional automobile configuration made by Vehicle Modeling Function (VMF) is performed and the influence of wheel arch, wheels, rotating wheel & moving ground condition to the automotive aerodynamic performance is analyzed. Finally, it is shown that rotating wheel & moving ground condition decreases automotive aerodynamic drag owing to the reduction of the induced drag led by the decrease of COANDA flow intensity of the rear trunk flow.

Computational Aerodynamic Analysis of Airfoils for WIG(Wing-In-Ground-Effect) -Craft (지면효과익기 날개에 대한 전산 공력 해석)

  • Joh, Chang-Yeol;Kim, Yang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.37-46
    • /
    • 2004
  • Several notes on ground effects drawn from Navier-Stokes analyses and their aerodynamic interpretations were addressed here; For two-dimensional ground effect, the change of surface pressure due to image vortex, the venturi effect due to thickness and the primary inviscid flow phenomena of ground effect, and for three-dimensional ground effect, strengthened wing tip vortices, increased effective span and the outward drift of trailing vortices. Irodov's criteria were evaluated to investigate the static longitudinal stability of conventional NACA 6409 and DHMTU 8-30 airfoils. The analysis results demonstrated superior static longitudinal stability of DHMTU 8-30 airfoil. The DHMTU airfoil has quite lower value of lrodov's criterion than the conventional NACA airfoil, which require much smaller tail volume to stabilize the whole WIG-craft at its design stage.

Flap Design Optimization for KLA-100 Aircraft in compliance with Airworthiness Certification (인증규정을 고려한 KLA-100항공기 고양력장치 최적화 설계)

  • Park, Jinhwan;Tyan, Maxim;Nguyen, Nhu Van;Kim, Sangho;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.649-656
    • /
    • 2013
  • High-lift devices have a major influence on takeoff, landing and stall performance of an aircraft. Therefore, a slotted flap design optimization process is proposed in this paper to obtain the most effective flap configuration from supported 2D flap configuration. Flap deflection, Gap and Overlap are considered as main contributors to flap lift increment. ANSYS Fluent 13.0.0$^{(R)}$ is used as aerodynamic analysis software that provides accurate solution at given flight conditions. Optimum configuration is obtained by Sequential Quadratic Programing (SQP) algorithm. Performance of the aircraft with optimized flap is estimated using Aircraft Design Synthesis Program (ADSP), the in-house performance analysis code. Obtained parameters such as takeoff, landing distance and stall speed met KAS-VLA airworthiness requirements.

Static Aeroelastic Optimization of a Composite Wing Using Genetic Algorithm (유전자 알고리즘을 이용한 복합재료 날개의 정적 공탄성 최적화)

  • Kim, Dong-Hyun;Lee, In
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.61-71
    • /
    • 2000
  • Today, the use of composite materials become an essential part in the design and manufacturing process of the flight vehicles to reduce the structural weight. Since the structural properties can be varied largely due to the stacking sequence of ply angles, it is very important problem to determine the optimized ply angles under a design objective. Thus, in this study, the analysis of static aeroelastic optimization of a composite wing has been performed. An analytical system to calculate and optimize tile aero-structural equilibrium position has been developed and incorporated with the genetic algorithm. The effects of stacking sequence on the structural deformation and aerodynamic distribution have been studied and calculated with the condition of minimum structural deformation for a swept-back composite wing. For the set of practical stacking angles, the design results to maximize the performance of static aeroelasticity are also presented.

  • PDF

Combined Effects of Sideslip and AOA on the Vortical Flow of Delta Wing (삼각날개 와류장에서의 옆미끄럼과 받음각의 복합효과)

  • Lee, Gi Yeong;Son, Myeong Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.17-24
    • /
    • 2003
  • This paper presents results from steady wind tunnel test conducted on a $65^{\circ}$ delta wing at a root chord Reynolds number of $1.76{\times}10^6$. In these experiments, the wing was instrumented with 188 pressure taps, conjunction with powerful multi-channel data logging system, allowed the wing upper surface pressure distribution to be measured. Analysis indicates that the wing upper surface distribution can provide considerable insight into the comvined aerodynamic effects of angle of attack and sideslip on the wing. In a sideslip condition, the strength of the vortex on the windward side is much stronger than that of leeward side. This asymmetric pressure disstribution betwwen each side of wings result in a negative value of rolling moment. However, at a certatin range of angle of attck and sideslip angle(${\alpha}$=$24^{\circ}{\sim}36^{\circ}C$, ${\beta}$=$-5^{\circ}{\sim}-15^{\circ}C$) abrupt change of sign of rolling monent, rolling monent reversal, was observed.

Dynamic Aeroelastic Characteristics of an All-Movable Canard with Oscillating Flap Used in UAV (플랩이 있는 무인기 전운동 카나드의 동적공탄성 특성)

  • Kim, Dong-Hyun;Koo, Kyo-Nam;Lee, In;Kim, Sung-Jun;Kim, Sung-Chan;Lee, Jung-Jin;Choi, Ik-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.56-63
    • /
    • 2004
  • In this study, dynamic aeroelastic analyses of the canard with oscillating flap are conducted considering the effect of aerodynamic compressibility. The canard model considered herein is an all-movable type with a pitching axis on a canard-rotor-wing aircraft which was considered as one of the major UAV candidates under developing in Korea. The equivalent structural model is constructed based on the initial design data by the Korea smart UAV development center. Both the frequency and the time-domain aeroelastic analyses have been applied to practically conduct parametric studies on the effects of equivalent torsional stiffness. In the case of all-movable control surface with oscillating flap, the equivalent rotational stiffness of the pitch axes are important design parameters. The parametric results for the aeroelastic instability are practically presented.

Effects of Number of Sides on Aerodynamic Characteristics of Super-Tall Buildings (단면의 변의 수가 초고층 건물의 공력특성에 미치는 영향)

  • Kim, Yong-Chul;Bandi, Eswara Kumar;Tamura, Yukio;Yoshida, Akihito;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.83-90
    • /
    • 2013
  • A series of wind tunnel tests were conducted on 7 super-tall buildings with various polygon cross-sections, including triangle, square, pentagon, hexagon, octagon, dodecagon, and circular. The primary purpose of the present study is to investigate the effect of increasing number of sides on aerodynamic characteristics for super-tall buildings. Wind tunnel tests were conducted under the turbulent boundary layers whose power-law exponent is 0.27. Fluctuating wind pressures from more than 200 pressure taps were recorded simultaneously, and time series of overturning moments were calculated considering tributary area of each pressure tap. The results show that the overturning moment coefficients and the spectral values decrease with increasing number of sides, and the largest mean and fluctuating overturning moments were found for the triangular super-tall building, and the largest spectral values were found for the square super-tall building. The analysis should be conducted more in detail, but currently it can be roughly said that there seems to be a little differences in the aerodynamic characteristics for the super-tall buildings whose number of sides is larger than 5 or 6.

Study of Critical Flutter Velocities of Bridge Girder Sections with Different Structural Stiffness (구조 강성에 따른 교량 구조물의 임계 플러터 속도 연구)

  • 박성종;권혁준;김종윤;한재흥;이인
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.271-278
    • /
    • 2004
  • Numerical analysis of wind effects on civil engineering structures was performed. Aerodynamic effect often becomes a governing factor and aeroelastic stability boundary becomes a prime criterion which should be confirmed during the structural design stage of bridges because the long-span suspension bridges are prone to the aeroelastic instabilities caused by wind. If the wind velocity exceeds the critical velocity that the bridge can withstand, then the bridge fails due to the phenomenon of flutter. Navier-Stokes equations were used for the aeroelastic analysis of bridge girder section. The aeroelastic simulation is carried out to study the aeroelastic stability of bridges using both Computational Fluid Dynamic (CFD) and Computational Structural Dynamic (CSD) schemes. Critical flutter velocities were computed for bridges with different stiffness. It was confirmed that the critical flutter velocity of bridge girder section was sensitive to the change of structural stiffness.

A NUMERICAL STUDY ON THE EFFECT OF VEHICLE-TO-VEHICLE DISTANCE ON THE AERODYNAMIC CHARACTERISTICS OF A MOVING VEHICLE (차간 거리가 주행차량의 공력특성에 미치는 영향에 관한 수치해석 연구)

  • Kim, D.G.;Kim, C.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.66-71
    • /
    • 2014
  • Aerodynamic design of a vehicle has very important meaning on the fuel economy, dynamic stability and the noise & vibration of a moving vehicle. In this study, the correlation of aerodynamic effect between two model vehicles moving inline on a road was studied with the basic SAE model vehicle. Drag and lift are two main physical forces acting on the vehicle and both of them directly effect on the fuel economy and driving stability of the vehicle. For the research, the distance between two vehicles is varied from 5m to 30m at the fixed vehicle speed, 100km/h and the side-wind was assumed to be zero. The main issue for this numerical research is on the understanding of the interaction forces; lift and drag between two vehicles formed inline. From the study, it was found that as the distance between two vehicles is closer, the drag force acting on both the front and rear vehicle decreases and the lift force has same trend for both vehicle. As the distance(D) is 5m, the drag of the front vehicle reduced 7.4% but 28.5% for the rear-side vehicle. As the distance is 30m, the drag of the rear vehicle is still reduced to 22% compared to the single driving.

Multi-MW Class Wind Turbine Blade Design Part II : Structural Integrity Evaluation (Multi-MW급 풍력발전용 블레이드 설계에 관한 연구 Part II : 구조 건전성 평가)

  • Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.311-320
    • /
    • 2014
  • Rotor blades are important devices that affect the power performance, efficiency of energy conversion, and loading and dynamic stability of wind turbines. Therefore, considering the characteristics of a wind turbine system is important for achieving optimal blade design. When a design is complete, a design evaluation should be performed to verify the structural integrity of the proposed blade in accordance with international standards or guidelines. This paper presents a detailed exposition of the evaluation items and acceptance criteria required for the design certification of wind turbine blades. It also presents design evaluation results for a 2-MW blade (KR40.1b). Analyses of ultimate strength, buckling stability, and tip displacement were performed using FEM, and Miner's rule was applied to evaluate the fatigue life of the blade. The structural integrity of the KR40.1b blade was found to satisfy the design standards.