• Title/Summary/Keyword: 공기 제어

Search Result 923, Processing Time 0.033 seconds

Unity Engine-based Underwater Robot 3D Positioning Program Implementation (Unity Engine 기반 수중 로봇 3차원 포지셔닝 프로그램 구현)

  • Choi, Chul-Ho;Kim, Jong-Hun;Kim, Jun-Yeong;Park, Jun;Park, Sung-Wook;Jung, Se-Hoon;Sim, Chun-Bo
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.64-74
    • /
    • 2022
  • A number of studies related to underwater robots are being conducted to utilize marine resources. However, unlike ordinary drones, underwater robots have a problem that it is not easy to locate because the medium is water, not air. The monitoring and positioning program of underwater robots, an existing study for identifying underwater locations, has difficulty in locating and monitoring in small spaces because it aims to be utilized in large spaces. Therefore, in this paper, we propose a three-dimensional positioning program for continuous monitoring and command delivery in small spaces. The proposed program consists of a multi-dimensional positioning monitoring function and a ability to control the path of travel through a three-dimensional screen so that the depth of the underwater robot can be identified. Through the performance evaluation, a robot underwater could be monitored and verified from various angles with a 3D screen, and an error within the assumed range was verified as the difference between the set path and the actual position is within 6.44 m on average.

The Volcanic Eruption Velocity and Tumulus of Jeju Island Controlled by the Natural Intelligence (자연 지능 제어에 의한 제주도의 화산 폭발 속도와 튜물러스)

  • Lee, Seong kook;Lee, Moon Ho;Kim, Jeong Su
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.493-499
    • /
    • 2022
  • This paper reports the results of the eruption of a volcano on Jeju Island at a certain rate, and the tumulus formed after the eruption and the basalt that erupted from the middle of Mt. Halla washed up to the sea. We analyzed the speed when basalt underground magma breaks through the neutral zone on the ground with an absolute temperature of about 1000K and explodes at an absolute temperature of 1200K at an altitude of 1950m. The density of combustion gas becomes smaller than the surrounding air due to the plume volcanic eruption, which is the heat flow of the flame column due to buoyancy, and buoyancy is generated and an updraft is formed. Flame pillars are classified as continuous, intermittent, and buoyant flame zones. As the speed of the flame pillar of Mt. Halla (1950m) falls from the highest point it has risen, potential energy is converted into kinetic energy and is caused by the flow of fluid, solving these two equations equal, the volcanic eruption velocity is 87.5 m/s. At this time, the density of magma is inversely proportional to the temperature. Geomunoreum (456m) had an explosion speed of 42.6m/s.

Aerodynamic Retrofit of Bridge and Energy Harvesting by Small Wind Turbines (소형 풍력발전기를 이용한 교량의 공력성능 개선 및 에너지 생산)

  • Kwon, Soon-Duck;Lee, Seongho;Lee, Hankyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.27-33
    • /
    • 2010
  • This study addresses a methodology to use small wind turbines for dual purposes, improving aerodynamic performance of flexible bridges and wind energy harvesting. A way to proper placement of small wind turbines on flexible bridges were proposed according on the analogy of conventional aerodynamic appendages. From the wind tunnel tests, it was found that the wind turbine attached like fairing was effective to reduce the vortex-induced vibration of bridge and the optimal spanwise interval of the wind turbine was 3-4.5 time of turbine diameter. Moreover the aerodynamic coefficients of the bridge were improved after installation of the wind turbines. Present results showed the general availability of wind turbine for improvement of aerodynamic performance and energy supply of flexible bridges although the capacity of wind power generation was strongly dependent on wind characteristics of the bridge site.

Cracking and Durability Characteristics of High-early-strength Pavement Concrete for Large Areas using Calcium Nitrate (질산칼슘 혼화재를 사용한 대단면 급속 포장 콘크리트의 균열 및 내구특성)

  • Won, Jong Pil;Lee, Si Won;Lee, Sang Woo;Park, Hae Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.101-108
    • /
    • 2009
  • The performance of high-early strength pavement concrete for large areas is influenced by the physical and chemical environment during service life. Generally, penetration, diffusion, and absorption of harmful materials that exist outside the concrete cause damage to its structure. Thus, we have to use a mixture for durability to keep the required quality for the planned service life. Moreover, in using high-early-strength cement and accelerators, a high heat of hydration to create the initial strength can cause cracks. Based on evaluations from optimal mix proportions of high-early-strength pavement concrete for large areas, we conducted water permeability, abrasion resistance, freeze-thaw, plastic, drying, and autogenous shrinkage tests. Test result showed that a mix of accelerator and PVA fibers showed excellent performance.

Performance Evaluation of Structure Strengthening Using Sprayed FRP Technique (분사식 FRP공법을 이용한 구조물 보강 성능평가)

  • Chang, Chun-Ho;Jang, Kwang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.4 s.56
    • /
    • pp.126-136
    • /
    • 2009
  • The sprayed FRP strengthening technique is combining the Glass fiber and Polyester resin in open air and spraying randomly at concrete's surface with high-speed compressed air. Then it strengthens the structures with a new technique evaluated the structural performance. We applied it to concrete beam and tested for flexural strength, depended on Korea Standard(KS F 2408). Then based on the result of flexural strength, the properties were proposed that applying to structures. Based on the experiment, we have evaluated structural performance by the experiment. 1/5 scale prestressed concrete I-beam were made by Korean Highway's typical drawing in 1993. With these test results, 49.8% increased in flexural strength, improvement of the behavior of serviceability state, and strengthening was surely effective for controlling deflection and crack of structure. Consequently, it can be summarized that Sprayed FRP technique has prospect to improve the performance of structure.

Evaluation of Ventilation Systems in an Enclosed Nursery Pig House (무창자돈사의 환기시스템 정립 및 환기효율 평가)

  • Song, J.I.;Choi, H.L.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.123-134
    • /
    • 2002
  • An experiment was conducted to establish the most suitable ventilation system for the enclosed nursery pig house in Korea, comparing four different ventilation systems ; i) air enters through perforated ceiling and exhausts through chimney (NA), ii) air enters through perforated ceiling and exhausts through side walls (NB), iii) air enters through perforated ducts and exhausts through side walls (NC) and iv) air enters through perforated ducts and exhausts through chimney(ND). The experiment was carried out during winter and summer separately. The experimental pigs were weaned at fourteen days old in winter (December-February) and at twenty one days old in summer (June-August). The main results of the experiment are as follows : A preliminary experiment showed that in the NC system during summer, air can reach all the pig rooms in the house and the air flow rates of the upper, middle (1.2 m height of the room) and low (at the height of pig stature) parts of the room were measured at 7.0-8.08, over 0.5 and over 0.2 m/s, respectively, which flow rates were much higher(p$<$0.05) than those in other system. At the minimum ventilation efficiency during winter, air flow rates of upper, middle and low parts of the room equipped with the NC system were detected at over 1, less than 0.5 and around 0.07 m/s, respectively. It is concluded that the separated ventilation system air-entering through ducts is the most suitable for the ventilation system of the enclosed nursery pig house and the exhausting system through side walls is more efficient for ventilation than the system through roof. Furthermore, to sustain proper temperature and reduce energy waste as well as heat consumption, a future research should be carried out to develop the environmental control system in relation to developing a heat regulator.

Improvement of Energy Efficiency of Plants Factory by Arranging Air Circulation Fan and Air Flow Control Based on CFD (CFD 기반의 순환 팬 배치 및 유속조절에 의한 식물공장의 에너지 효율 향상)

  • Moon, Seung-Mi;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2015
  • As information technology fusion is accelerated, the researches to improve the quality and productivity of crops inside a plant factory actively progress. Advanced growth environment management technology that can provide thermal environment and air flow suited to the growth of crops and considering the characteristics inside a facility is necessary to maximize productivity inside a plant factory. Currently running plant factories are designed to rely on experience or personal judgment; hence, design and operation technology specific to plant factories are not established, inherently producing problems such as uneven crop production due to the deviation of temperature and air flow and additional increases in energy consumption after prolonged cultivation. The optimization process has to be set up in advance for the arrangement of air flow devices and operation technology using computational fluid dynamics (CFD) during the design stage of a facility for plant factories to resolve the problems. In this study, the optimum arrangement and air flow of air circulation fans were investigated to save energy while minimizing temperature deviation at each point inside a plant factory using CFD. The condition for simulation was categorized into a total of 12 types according to installation location, quantity, and air flow changes in air circulation fans. Also, the variables of boundary conditions for simulation were set in the same level. The analysis results for each case showed that an average temperature of 296.33K matching with a set temperature and average air flow velocity of 0.51m/s suiting plant growth were well-maintained under Case 4 condition wherein two sets of air circulation fans were installed at the upper part of plant cultivation beds. Further, control of air circulation fan set under Case D yielded the most excellent results from Case D-3 conditions wherein air velocity at the outlet was adjusted to 2.9m/s.

Evaluation for Applicability of Reinforced Concrete Structure with Domestic Pond Ash (국산 매립회 골재를 사용한 콘크리트 구조물의 적용성 평가)

  • Lee, Bong-Chun;Jung, Sang-Hwa;Chae, Sung-Tae;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.541-550
    • /
    • 2011
  • Many researches have been performed on concrete with fly ash and bottom ash. However researches on concrete with pond ash (PA) and its application to RC (Reinforced Concrete) structure are limitedly carried out. This paper presents an applicability of PA concrete in construction of real size structure. Referring to the previous study, 2 domestic PA samples with normal performance are selected and 2 replacement ratios (25% and 50%) to fine aggregate are considered for 5 PA concrete structures consisting of column, slab, and wall. In order to evaluate the property of fresh concrete, several tests including air content, slump, and setting time are performed. Using cored out samples from hardened PA concrete structure, tests for strength, resistance to carbonation and chloride penetration are carried out and compared with control samples. Additionally, tests for rebound hardness, drying shrinkage, and hydration heat are performed for PA concrete structure. The test results showed that PA concrete has reasonable strength and durability performances compared to those of normal concrete. Therefore, its potential application to RC structure is promising. The PA aggregate can be more actively used for RC structures with better quality control for content of fly ash, bottom ash, and unburned carbon.

Development of a Dynamic Deformable Rubber Membrane Parapet to Cope with the Long Term Sea Level Rise and the Abnormal Waves (장기해수면 상승 및 이상파랑에 대비한 동적 가변형 고무막체 파라펫 개발)

  • Kim, Sun-Sin;Chun, In-Sik;Lee, Young-Gun;Ko, Jang-Hee;Hong, Seung-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.34-42
    • /
    • 2011
  • It's been reported that the global warming effect has invoked the ever increasing typhoon intensity and long-term sea level rise which jointly cause severe wave overtopping over breakwaters or shore dykes. A simple measure to cope with this undesirable change may be just to increase the crest height of the dykes and breakwaters. This is surely effective to prevent wave overtopping, but it also decreases the seaward visibility of coastal waterfront. In this paper, a dynamic deformable rubber membrane parapet which not only reduces wave overtopping in storm period but also secures seascapes in normal days is presented. Several optimal configurations of the parapet are proposed. Through numerical analyses using a nonlinear finite element model and hydraulic experiments, the air controlled expansion and contraction of the parapets, their behavior against wave overtopping and structural stability are investigated.

Performance and Emission Characteristics of a CNG Engine Under Different Natural Gas Compositions (천연가스 조성 변화에 따른 CNG 엔진 성능 및 배기가스 특성)

  • Ha, Young-Cheol;Lee, Seong-Min;Kim, Bong-Gyu;Lee, Chang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.749-755
    • /
    • 2011
  • The performance and emission characteristics of a CNG (compressed natural gas) engine were experimentally investigated under different natural gas compositions. The engine specifications were as follows: 6606 cc, turbo, lean-burn-type; its ignition timing was fixed for the fuel gas with a HHV (higher heating value) of 10454 kcal/$Nm^3$. The experimental results showed that when the HHV of the fuel gas was changed from 10454 kcal/$Nm^3$ to 9811 kcal/$Nm^3$ and 9523 kcal/$Nm^3$, the average power reductions were 3.2 % and 3.4 % (1.5 % and 2.1 %, respectively, with A/F control switched off), respectively, and the average thermal-efficiency reductions were 1.1 % and 1.5 % (1.5 % and 2.1%, respectively, with A/F control switched off), respectively. The emissions of $CO_2$, CO, and $NO_x$ decreased as the HHV of the fuel gas was lowered. On the other hand, the emissions of THC (total hydrocarbon) were not consistent, and the extent of change in their emissions was small.