• Title/Summary/Keyword: 공기와 공사비

Search Result 231, Processing Time 0.021 seconds

A Study on the Compression of Construction Period by the Improvement of Trench Excavation for Slurry Wall Method (지하연속벽 시공 시 트렌치 굴착방법 개선을 통한 공기단축에 관한 연구: 현장적용사례를 중심으로)

  • Lee, Young Soo;Park, Hyung-Keun;Kang, Kyubyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5D
    • /
    • pp.499-505
    • /
    • 2012
  • As the excavation depths during excavation works in urban sites are getting deeper and bigger, It is necessary to study for the improvements to solve the problems in the excavation processes. This research deals with the excavation method that can not only minimize the effect on the surrounding constructions, but also shorten the construction period of the excavation work. For this research, there have been an extensive literature review of the bibliographic data about Slurry Wall Method, which is recognized around the world, and the analysis of the major problems in the existing ineffective construction step. These efforts led to the technical improvements. Accordingly, a new construction method applied with the new technical factors has been suggested, and it was possible to compare Slurry Wall Method with the construction method and analyze them on the base of the examples using the suggested method. This new method decreased the excavation period by 15 days. It took only 33days to finish the excavation work, as compared to 48 days that can be seen on the pre-modification schedule. Furthermore, the suggested method in this research is safer, more economically feasible, and better for the environment than Slurry Wall Method. It will contribute to shortening the construction period of Slurry Wall Method in the end.

Development of Quantitative Decision Support Model for Optimal Form-Work Based on Construction Site Type (건축 공사현장 유형별 최적 거푸집 공법선정을 위한 정량적 의사결정 지원모델 개발)

  • Kim, Oh-Hyung;Cha, Hee-Sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.4
    • /
    • pp.56-68
    • /
    • 2019
  • An optimal selection of form-work is very important in the construction project in terms of construction cost and duration management. Also, it substantially affects the quality of the structure and the finishing work. However, in South Korea, the decision making on the selection of form-work has been based on the experience and intuition of construction practitioners not on the objective data or rational decision-making system. In order to solve the problem, several types of research on the selection of form-work has been processed. However, they did not consider the construction site condition, which is one of the most important factors for the selection of form-work. Thus, the objective of this study is developing the objective decision supporting system considering the site condition. This study provides the quantitative decision support model for optimal form-work based on construction site type. It is expected that the decision support model will help the practitioners decide optimal form-work based on the objective data. It will ameliorate the existing decision making process using experience and intuition. In addition, because the model considers site-conditions, it will provide more accurate and appropriate decision on the selection of an optimal form-work.

A study on the economical analysis of non-supporting form in basement wall cases (지하옹벽 무지주 거푸집 사례의 경제성 분석에 관한 연구)

  • Kim, Jae-Yeob;Kim, Gwang-Hee;Lee, Sang-Woo;Sohn, Young-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.111-117
    • /
    • 2009
  • Considering the entire critical path, underground works in construction projects occupy a large part of the total construction period, as well as a large part of the construction costs. Particularly in the downtown area, the scale of underground work has been increasing every year. Currently, underground retaining walls, which are built at construction sites, require many skilled workers, and the works are being undertaken by means of the Euroform+Soldier system, which is quite disadvantageous in terms of the construction period. In order to complement this, forms made of new materials and new construction methods have been developed. Now more than eyer, the shortening of construction periods and the reduction of construction costs is required. Considering this, in this study, the researcher has tried to compare the Euroform+Soldier system, which has been the system most frequently used on construction sites, to the non-supporting form system, which has been used on the sites of civil engineering work. The results of the research revealed that although the Euroform+Soldier system was advantageous from the perspective of material costs, it was disadvantageous in terms of labor costs. It is thought that an additional study on a method for reducing the material costs is required, so as to revitalize the application of non-supporting forms to the construction site.

A Study on Benefit/Cost Analysis of Form Work Methods for High-rise Residential Buildings (고층 주거건축물 거푸집의 편익/비용 분석에 관한 연구)

  • Kim, Jae-Yeob;Kim, Jae-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.49-57
    • /
    • 2010
  • Selecting an appropriate formwork to fit the construction of a high-rise building is an important factor that can influence the success or failure of a construction. Currently, however, the reality is that in domestic high-rise building construction, the selection of an appropriate formwork with consideration of the characteristics of the formwork has not been done in a reasonable manner. To select formwork in a systematic and reasonable fashion, comprehensive consideration is required that must not only include the aspect of construction costs, but also air, quality, safety, and environmental issues. Therefore, this study aims to rationalize the selection process of formwork by applying the scientific method of Analytic Hierarchy Process (AHP) to the selection process of formwork, in terms of construction costs, quality and safety. To do this, the researcher investigated the current status of formwork being used in high-rise residential building construction. Then, based on the results of this investigation, the researcher selected an alternative for the formwork, and taking construction experts as the subjects of this study, conducted a survey on the applicability of the formwork as well as the priority of management thereof when selecting formwork. It is judged that the results of this research will contribute a more scientific and reasonable decision-making process than the existing non-scientific method in selecting formwork for high-rise residential building construction.

A Rating Method for the Estimation of the Additional Overhead Expenses incurred by Schedule Extension in Public Construction Projects (공공건설공사의 공기연장에 따른 추가간접비 산출을 위한 요율방식 제안)

  • Lee, Seung-Joon;Cha, Yongwoon;Han, Sangwon;Hyun, Chang-Taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.3
    • /
    • pp.79-90
    • /
    • 2021
  • In domestic public construction, disputes are increasing due to differences among stakeholders regarding contract price adjustment. In particular, the actual cost-plus fee for overhead costs due to the schedule extension cannot be agreed upon at the administrative phase, and most of them seek judicial judgment. Thus, this study aims to propose a 'sufficiently satisfactory' alternative to reach an agreement before disputes in order to minimize disputes related to the calculation of additional overhead costs. To this end, this study proposes three alternatives based on the rate method. Firstly, when calculating additional overhead costs, it is not calculated as an actual cost-plus-fee method, but as a rate compared to direct labor costs among net direct costs. Secondly, the calculated indirect labor costs are compensated for up to the legal maximum of legal limit costs such as general management costs, profits and so on. Thirdly, it reflects overhead costs increased or decreased due to change orders. Risks were analyzed by collecting expert opinions on the proposed methods and applying actual cases. Finally, as a result of investigating the level of consensus for each stakeholder, it was confirmed that all stakeholders could agree regardless of the size of the company. The result of this study is expected to as a useful tool among stakeholders in the construction fields that can be able to easily agreed upon.

Analysis and Reduction for Risk factors of Construction Projects (건설공사의 리스크인자 분석 및 경감에 관한 연구)

  • Chung Byoung-Hwa;Chung Young-Shik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.2 no.4 s.8
    • /
    • pp.62-68
    • /
    • 2001
  • The purpose of this study was to Identification the Risk of construction method to protect and reduce of construction period. Risk management is one of the key project management process. Numerous tools are available to support the various phases of the risk management process. We present the results of a study designed to identify the tools that are most widely used and those that are associated with successful project management in general, and with effective project risk management in particular. The study is based on a questionnaire administered to a sample of project managers from construction enterprises. The response data was analyzed in order to find which tools are more likely to be used in the those organizations that report better project management performance and in those that value the contribution of risk management processes.

  • PDF

Improvement Efficiency of Tunnel Work using Site Surveying System (현장측량시스템을 이용한 터널공사의 효용성 향상)

  • Choi, Seok-Keun;Ahn, Won-Tae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.31-37
    • /
    • 2006
  • The existing tunnel survey method contains many problems of taking much measuring time, increasing construction expenses, and delaying a term of construction. Therefore the site survey system for an improvement efficiency is developed. This system will be able to solve the ewer factor and the problem of curtailment of time and expenditure. In order to solve these problems it connected a measurement equipment and a notebook computer, and developed the system which simultaneously with tunnel measurement it will be able to decide locations and errors from site at real-time. The development or the tunnel survey system minimize the error occurrence as measuring tunnel, and the probability of more or less excavation. Therefore this site survey system leads to the effect of the improvement execution quality of work, the cost reduction and the construction term reduction.

  • PDF

Waste Elimination in Construction Process using Value Stream Analysis - Focused on Waste Elimination of Re-bar Works (가치흐름 분석을 통한 건설프로세스의 낭비제거 방안)

  • Mun Jeong-Mun;Kim Chang-Duk;Park Dong-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.416-421
    • /
    • 2001
  • The domestic reinforcement concrete works have mainly worked the process of re-bar fabrication/assembly on site and re-bar works affected by structural safety, durability, and schedule with form work. Accordingly, This study analyzes the process of re-bar fabrication/assembly on site to apply lean production principles to construction Value Stream Analysis(VSA) is analyzed into value-adding activity and non-value-adding activity on construction process through value analysis and Value Stream Mapping(VSM). In the results, non-value-adding activity generates waste such as the activity steps, labors, equipments, materials, time, and so on. Additionally, push-driven production is investigated making low productivity from the overproduction and so on. To resolve the problems in the process, The purpose of this paper eliminates waste factor through maximizing the value-adding activity generating value added and minimizing non-value adding activity. Particularly, it makes flow production and pull-driven production through minimizing work-in-process(WIP ).

  • PDF

Analysis of the Relations between Design Errors Detected during BIM-based Design Validation and their Impacts Using Logistic Regression (로지스틱 회귀분석을 이용한 BIM 설계 검토에 의하여 발견된 설계 오류와 그 영향도간의 관계 분석)

  • Won, Jong-Sung;Kim, Jae-Yeo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.535-544
    • /
    • 2017
  • This paper analyzes the relations between design errors, prevented by building information modeling (BIM)-based design validation, and their impacts in order to identify critical consideration factors for implementing BIM-based design validation in architecture, engineering, and construction (AEC) projects. More than 800 design errors detected by BIM-based design validation in two BIM-based projects in South Korea are categorized according to their causes (illogical error, discrepancy, and missing item) and work types (structure, architecture, and mechanical, electrical, and plumbing (MEP)). The probabilistic relations among the independent variables, including the causes and work types of design errors, and the dependent variables, including the project delays, cost overruns, low quality, and rework generation that can be caused by these errors, are analyzed using logistic regression. The characteristics of each design error are analyzed by means of face-to-face interviews with practitioners. According to the results, the impacts of design error causes in predicting the probability values of project delays, cost overruns, low quality, and rework generation were statistically meaningful.

Alternative Evaluation Model for Tower Crane Operation Plan in Modular Construction - Focusing on Modular Unit Installation and Finishing works - (모듈러 건축 타워크레인 운용 계획의 대안 평가 모델 - 유닛 설치 및 마감공사를 중심으로 -)

  • Kim, Joo Ho;Park, Moonseo;Lee, Hyun-Soo;Hyun, Hosang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.2
    • /
    • pp.50-60
    • /
    • 2018
  • Recently, modular construction method has been widely applied to projects with repetitive processes including dormitory, the residential facility, and the hotel construction due to reduced labor input and shortened construction schedule. Generally, about 40% of total on-site construction cost excluding unit installation cost, is put on exterior finishing work, and thus management of finishing work is deemed important in maintaining the targeted schedule and cost. Since limited equipment is shared so that subsequent activities are not affected while carrying out on-site installation and finishing work, lifting plan becomes more important for modular projects with greater portion of finishing work load. In this regard, tower crane operation plan may take the form of a single cycle or multiple cycles in which equipment efficiency can be affected. However, difficulties exist in evaluating alternatives to tower crane operation plans supporting unit installation and finishing work. Therefore, this study aims to evaluate the alternative of tower crane operation method according to the cyclic period setting in modular building site to determine the effect on T/C uptime and process by parameterizing lifting time for unit and exterior finishing material, lift cycle for unit and exterior finishing material and time required for finishing work. Accordingly, this study develops a simulation model that can increase the tower crane efficiency by controlling the work speed. An academic contribution of this study is to suggest a resource leveling method applying the concept of lifting cycle, and further is expected to be managerially used as a basis for an alternative evaluation of equipment plan.