• Title/Summary/Keyword: 공기분리

Search Result 509, Processing Time 0.034 seconds

Performance Analysis of IGCC Gas Turbine Considering Turbine Operation Condition Change due to Modulation of Nitrogen Dilution (질소희석량 조절에 따른 터빈 운전조건 변화를 고려한 IGCC 용 가스터빈의 성능분석)

  • Kim, Chang Min;Kang, Do Won;Kim, Tong Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.1023-1029
    • /
    • 2013
  • The integration between a gas turbine and an air separation unit (ASU) is important in IGCC plants. The portion of ASU air extracted from the gas turbine and the degree of nitrogen supply from the ASU to the gas turbine side are important operating parameters. Their effect on the gas turbine performance and operability should be considered in a wide ambient temperature range. In this study, appropriate nitrogen dilution rate and turbine inlet temperature that satisfy the two limitations of turbine blade temperature and maximum allowable power output were predicted. The air integration was set at zero. The simulation showed that the power output increases and turbine blade temperature decreases as the nitrogen dilution increases. The maximum allowable power output can be obtained under medium and low ambient temperature ranges. Under a high ambient temperature range, the achievable power is less than the maximum power.

Analysis on the Performance and the Emission of the Integrated Gasification Combined Cycle Using Heavy Oil (중잔사유 가스화 복합발전 사이클의 성능 및 환경배출 해석)

  • Lee, Chan;Yun, Yong-Seong
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.188-194
    • /
    • 2001
  • The process simulations are made on the IGCC power plant using heavy residue oil from refinery process. In order to model combined power block of IGCC, the present study employs the gas turbine of MS7001FA model integrated with ASU (Air Separation Unit), and considers the air extraction from gas turbine and the combustor dilution by returned nitrogen from ASU. The exhaust gas energy of gas turbine is recovered through the bottoming cycle with triple pressure HRSG (Heat Recovery Steam Generator). Clean syngas fuel of the gas turbine is assumed to be produced through Shell gasification of Visbreaker residue oil and Sulfinol-SCOT-Claus gas cleanup processes. The process optimization results show that the best efficiency of IGCC plant is achieved at 20% air extraction condition in the case without nitrogen dilution of gas turbine combustor find at the 40% with nitrogen dilution. Nitrogen dilution of combustor has very favorable and remarkable effect in reducing NOx emission level, while shifting the operation point of gas turbine to near surge point.

  • PDF

A Study on the Utilization of the LNG Cold Heat for the Reduction of the Power Consumption in Main Air Compressors in Cryogenic Air Separation (심냉 공기분리공정의 공기압축공정에서 전력비 절감을 위한 액화천연가스 냉열 활용에 대한 연구)

  • CHO, DUHEE;CHO, JUNGHO
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.3
    • /
    • pp.322-327
    • /
    • 2020
  • In this work, a study for the reduction of the electric power consumption has been estimated in main air compressors in the air separation unit through cryogenic distillation columns with PRO/II with PROVISION V10.2 at AVEVA company. Both required LNG mass flow rate and cold heat contained in 1 ton of LNG were also predicted using Peng-Robinson equation of state with Twu's new alpha function. Through this work, we concluded that 32.33-48.69% of electric power could be saved by using LNG cold heat.

An Experimental Study on the Energy Separation in the Geometric Setup of a Low Pressure Vortex Tube (저압용 vertex tube의 기하학적형상에 따른 에너지 분리특성에 관한 실험적 연구)

  • 오동진;류정인
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.276-282
    • /
    • 2002
  • The process of energy separation in a low Pressure vortex tube with compressed air as a work-ing medium is studied in detail. Experimental data of the temperature of the cold and hot air leaving the vortex tube are presented. The variation of the maximum wall temperature along the inner surface of the vortex tube and the temperature distribution in a vortex tube provide useful information about the location of the stagnation point of the flow field at the axis of the vortex tube. Analysis of the results enabled to find the optimum length of the vortex tube, the optimum shape of the Throttle and the usefulness of the Sleeve. In this study Outer tube is used for the exhaust application. The hot gas flow is turned 180$^{\circ}$and passes the out-side of the vortex tube a second time heating it. From this geometric setup of a vortex tube He effects of energy separation and the prediction of the ignition of Diesel Soot is presented by experimental data.

A Study on the Grade Efficiency of Sturtevant Type Air Classifier (스터테반트 공기분급기의 분리효율에 대한 연구)

  • 정인기;박시우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.773-781
    • /
    • 2004
  • This research was Performed to raise grade efficiency of Sturtevant type air classifier. to treat powder less than $74\mu\textrm{m}$ particle produced at the crushing process of the dry aggregates manufacturing system or concrete wastes recycling system. The experimental conditions were in the ranges. 0.85 to 5.15 $m^3$/s of primary air flow rate. 0.005 to 0.015 $m^3$/s of secondary air flow rate $30^{\circ}$ to $70^{\circ}$ of auxiliary blades angle. respectively. for 1.7~3.3 kg/min of the powder feed rate. It was found that the grade efficiency of the air classifier was increased as the baffle plate was attached at the expansion region. and the optimal operating conditions of the air flow rates and the blade angle were obtained. The fractional recovery curves from the experiments were well agreement with the theoretical one of Molerus model.

Conceptual design for the Production of Hydrogen in Coal Gasification System (석탄 가스화에 의한 수소 제조공정 개념설계)

  • Lee, Yun-Ju;Na, Gi-Pung;Park, Moon-Ju;Lee, Sang-Deuk;Hong, Suk-In;Moon, Dong-Ju
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.258-261
    • /
    • 2008
  • 상용공정 모사기인 PRO-II를 이용하여 석탄 가스화에 의한 수소 제조공정 개념설계를 수행 하였다. 이 공정은 공기분리(ASU), 석탄가스화, 가스정제, 고온 WGS 반응, 저온 WGS 반응, 수분제거, $H_2$분리, $CO_2$ 분리, $CH_4$ 분리(PSA) 등으로 구성되어 있다. 가스화기의 모사조건은 온도 $1200{\sim}1500^{\circ}C$, 압력 $15{\sim}30atm$, 공급몰비 C:$H_2O$:$O_2$=1:0.5$\sim$1:0.25$\sim$0.5로 하였으며, 정제공정의 온도와 압력은 각각 $550^{\circ}C$, 24.5atm으로 하였다. 생성된 합성가스는 WGS(HTS($400^{\circ}C$, 24atm), LTS($250^{\circ}C$, 23.5atm)) 반응을 거쳐 고순도 수소로 분리정제된다. 석탄을 10ton/day으로 공급하였을 때, 804.0kmol/day의 수소가 생성되었으며, 이때 가스화기 조건은 $1500^{\circ}C$, 25atm, 공급몰비 C:$H_2O$:$O_2$ = 1:0.58:0.43이었다.

  • PDF

Antibiotic Susceptibility to Isolated Bacteria and Fungi from the Indoor-air (실내 공기중에서 세균 및 진균의 분포와 분리균의 항생물질 감수성)

  • 장명웅;장태호;박인달;김광혁
    • Journal of Life Science
    • /
    • v.8 no.5
    • /
    • pp.537-549
    • /
    • 1998
  • This investigation was performed to isloate and identify the total bacteria, Staphylococcus spp. and fungi from the indoor air exposed for 30 minutes on the blood agar plate at the 27 places in a hospital. Antibiotic susceptibility tests of the isolated bacteria were also studied. The mean numbers of total bacteria, Staphylococci spp. and fungi were 26, 17, and 2 in the summer and 19, 8, and 2 in the winter, respectively. Staphylococcus epidermidis was the most common isolated bacteria, and the next was Staphylococcus aureus, Aerococcus spp., Micrococcus spp., and Bacillus spp. from the indoor-air of hospital. Aspergillus spp., Cephalosporum spp., Curvularia spp., penicillium spp., and Phialophora spp. was frequently isolated from the indoor-air of hospital. The 109 strains of isolated Staphylococcus epidermidis sho-wed resistance to tetracycline(45.0%), methicillin(40.2%), erythromycin(31.2%), and kanamycin(24.8%). The 76 strains of isolated Staphylococcus aureus showed resistance to erythromycin(71.7%), methicillin(63.2%), kanamycin (44.7%), tetracycline(39.5%), and ampicillin(32.9). The 67 strains of isolated Aerococcus spp. showed resistance to erythromycin(26.9%), methicillin(25.4%), kanamycin(22%), and tetracycline(22.4%). The 48 strains of isolated Micrococus spp. showed resistance to tetracycline(27.0%), methicillin(22.9%), erythromycin(22.9%), and kanamycin(20.8%).

  • PDF

Isolation and Characterization of Airborne Bacteria and Fungi in Indoor Environment of Elementary Schools (초등학교 실내환경에서 공기 중 세균과 진균의 분리 및 특성)

  • Kim, Na-Yeong;Kim, Young-Ran;Kim, Min-Kyu;Cho, Du-Wan;Kim, Jong-Seol
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.193-200
    • /
    • 2007
  • Indoor airborne bacterial and fungal concentrations were examined at classrooms and corridors of 3 elementary schools in Ulsan. Airborne microorganisms were collected with an impaction-type air sampler using plate count agar and dichloran rose bengal chloramphenicol agar. During the semester, concentrations of bacteria ranged $168{\sim}3,887 MPN/m^3$ at classrooms and $168{\sim}6,339 MPN/m^3$ at corridors, while those of fungi ranged $34{\sim}389 MPN/m^3$ at classrooms and $91{\sim}507 MPN/m^3$ at corridors. The bacterial concentrations showed larger variations between situations and schools compared to those of fungi. When airborne bacteria were isolated and identified, 84% were observed as Gram-positive, and Micrococcus spp. was the most abundant group with 61% of tested isolates, followed by genus Staphylococcus with 10%. The Micrococcus spp. isolates, of which 75% were identified as M. luteus, appeared to be from human origins. The protective pigments and substantial cell wall of Micrococcus may provide selective advantage for their survival in the air. We also isolated and identified 15 genera of filamentous fungi. The most common culturable fungi were Cladosporium, Aspergillus and Penicillium, and these 3 genera were 69% of fungal isolates. Genus Stachybotrys, of which S. chartarum is a well known producer of many potent mycotoxins, was also detected from one of the schools. further systematic studies are necessary with an emphasis on species identification and mycotoxin production of isolated fungal genera, including Aspergillus, Penicillium, and Stachybotrys.