• Title/Summary/Keyword: 공구 진동

Search Result 145, Processing Time 0.024 seconds

Change of Skin Temperature of Workers Using Vibrating Tools in Anthracite Mines (진동공구 사용근로자의 피부온도 변화)

  • Roh, Jae-Hoon;Moon, Young-Hahn;Shin, Dong-Chun;Cha, Bong-uk;Cho, Soo-Nam
    • Journal of Preventive Medicine and Public Health
    • /
    • v.21 no.2 s.24
    • /
    • pp.357-364
    • /
    • 1988
  • By implementing epoch-making policies for industrial promotion, the national economy has made a remarkable development. As a result of such economic growth, industrial accidents and occupational diseases have become a serious problem in Korean society. In the presidential order for the execution of the Korean Labor Standard Law, neuritis and other diseases stemming from health impairments due to vibrations in industrial processes are designated to be dealt with as vibration diseases. In the case of vibration disease, industrial accident compensation is not effectively paid. In order to investigate the vibration hazards of rock-drill operation, the authors studied the subjective symptoms and performed physical function tests on a total of 79 persons (vibration exposed group) who used rock-drills, and 39 persons (control group) who did not use rock-drills at anthracite mines. The results of the physical function test were as follosws : 1. The right hand was more affected by white finger than the left hand. 2. Independent variables such as duration of rock-drill operation, age, drinking and smoking were indentified as statistically significant factors for the occurrence of white finger. 3. In the pain sense threshold, the group with Raynaud's phenomenon showed a statistically higher level than that of the control group. 4. The skin temperature of the group with Raynaud's phenomenon was lower than that of the control group. The recovery time of skin temperature aftr cooling was delayed compared with the value of the control group.

  • PDF

Spacer Damper Maintenance Method by Using the Spacer Jig in Overhead Transmission Lines (송전선로에서 스페이서지그(Spacer Jig)를 이용한 스페이서댐퍼 유지보수공법)

  • Kim, J.S.;Kwon, S.W.;Park, Y.B.;Kwon, S.W.;Mun, S.W.;Cho, S.M.;Kim, D.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2008.04b
    • /
    • pp.22-24
    • /
    • 2008
  • 다도체 송전선로에서 전선 간격 유지 및 진동을 완화시켜주는 역할을 하는 스페이서댐퍼가 손상 받게 되면 즉시 유지보수 및 교체 작업을 하여야 한다. 그러나 이러한 작업은 송전선로 위에서 이루어지므로 전선의 장력과 작업자의 하중으로 인해 유지보수 및 교체작업이 매우 어렵고, 작업시간이 많이 소요되며, 전선표면손상, 스페이서댐퍼의 위치 변동 및 무리한 작업으로 인한 작업안전성 저하 등의 문제점이 있다. 따라서, 상기한 문제점을 해소하고 작업 효율의 상승을 위하여 작업시 각 전선의 간격을 쉽게 벌리고 좁힐 수 있는 작업용 공구인 스페이서지그(Spacer Jig)와 이를 이용한 송전선로의 스페이서댐퍼 유지보수 및 교체공법을 개발하여 교체작업시간 단축 및 작업안전성을 향상시킨 우수한 기술을 개발하였다.

  • PDF

Very Large Scale Analysis of Surfaces for Diamond Turned Machine Diagnosis (다이아몬드 선삭 가공기의 진단을 위한 대영역 표면 해석)

  • 김승우;장인철;김동식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.687-691
    • /
    • 2000
  • Diamond turning machines for manufacture of precision optics require deliberate diagnosis to ensure that all the machine elements are properly operating, kinematically, dynamically and thermally, to produce demanded work qualities. One effective way is to directly inspect topographical features of work surfaces that have been carefully generated with prescribed machining conditions intended to exaggerate faulty consequences of any ill-operating machine elements. In this research, a very-large-scale Phase measuring interferometric system that has been developed for years at Korea Advanced Institute of Science and Technology is used to fulfill the metrological requirements fur the surface analysis. A special stitching technique is used to extend the measuring range, which integrates all the patches that are separately sampled over the whole surface while moving the stage. Then, the measured surface profile is analyzed to releated the machine error sources. For this, zernike polynomial fitting is used together with the wavelet filter and the fourier transform. Experimental results showed that the suggested technique in this study is very effective in diagnosing actual diamond turning machines

  • PDF

A Development of the Spacer Jig for Spacer Damper Replacement of 6 Bundle conductor 765kV Transmission Line (765kV 6도체용 스페이서댐퍼 교체를 위한 스페이서지그 개발)

  • Kim, J.S.;Kim, D.Y.;Mun, S.W.;Cho, S.M.;Kwon, S.W.;Park, Y.B.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2077-2078
    • /
    • 2008
  • 다도체 송전선로에서 전선 간격 유지 및 진동을 완화시켜주는 역할을 하는 스페이서 댐퍼가 손상 받게 되면 즉시 유지보수 및 교체 작업을 하여야 한다. 그러나 이러한 작업은 송전선로 위에서 이루어지므로 전선의 장력과 작업자의 하중으로 인해 유지보수 및 교체작업이 매우 어렵고, 작업시간이 많이 소요되며, 전선표면 손상, 스페이서 댐퍼의 위치 변동 및 무리한 작업으로 인한 작업안전성 저하 등의 문제점이 있다. 따라서, 상기한 문제점을 해소하고 작업 효율의 상승을 위하여 작업시 각 전선의 간격을 쉽게 벌리고 좁힐 수 있는 작업용 공구인 스페이서지그(Spacer Jig)와 이를 이용한 송전선로의 스페이서 댐퍼 유지보수 및 교체공법을 개발하여 교체작업시간 단축 및 작업안전성을 향상시킨 우수한 기술을 개발하였다.

  • PDF

Prediction of Surface Topography by Dynamic Model in High Speed End Milling (고속 엔드밀 가공시 동적 모델에 의한 표면형상 예측)

  • Lee, Gi-Yong;Ha, Geon-Ho;Gang, Myeong-Chang;Lee, Deuk-U;Kim, Jeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1681-1688
    • /
    • 2000
  • A dynamic model for the prediction of surface topography in high speed end milling process is developed. In this model the effect of tool runout, tool deflection and spindle vibration were taken in to account. An equivalent diameter of end mill is obtained by finite element method and tool deflection experiment. A modal parameter of machine tool is extracted by using frequency response function. The tool deflection, spindle vibration chip thickness and cutting force were calculated in dynamic cutting condition. The tooth pass is calculated at the current angular position for each point of contact between the tool and the workpiece. The new dynamic model for surface predition are compared with several investigated model. It is shown that new dynamic model is more effective to predict surface topography than other suggested models. In high speed end milling, the tool vibration has more effect on surface topography than the tool deflection.

A Study on Vibration Characteristics and Machining Quality in Thin-wall Milling Process of Titanium Alloy (티타늄 합금의 얇은 벽 밀링가공에서 가공방법에 따른 진동특성 및 가공품질에 관한 연구)

  • Kim, Jong-Min;Koo, Joon-Young;Jun, Cha-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.81-88
    • /
    • 2022
  • Titanium alloy (Ti-6Al-4V) has excellent mechanical properties and high specific strength; therefore, it is widely used in aerospace, automobile, defense, engine parts, and bio fields. Particularly in the aerospace field, as it has a low specific gravity and rigidity, it is used for the purpose of increasing energy efficiency through weight reduction of parts, and most have a thin-walled structure. However, it is extremely difficult to machine thin-walled shapes owing to vibration and deformation. In the case of thin-walled structures, the cutting forces and vibrations rapidly increase depending on the cutting conditions, significantly affecting the surface integrity and tool life. In this study, machining experiments on thin-wall milling of a titanium alloy (Ti-6Al-4V) were conducted for each experimental condition with different axial depths of cut, radial depth of cut, and machining sequence. The machining characteristics were analyzed, and an effective machining method was derived by a comprehensive analysis of the machined surface conditions and cutting signals.

Analysis of Environmental Factors Affecting the Machining Accuracy (가공정밀도에 영향을 미치는 환경요소 분석)

  • Kim, Young Bok;Lee, Wee Sam;Park, June;Hwang, Yeon;Lee, June Key
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.15-24
    • /
    • 2021
  • In this paper, to analyze the types of surface morphology error according to factors that cause machining error, the experiments were conducted in the ultra-precision diamond machine using a diamond tool. The factors causing machining error were classified into the pressure variation of compressed air, external shock, tool errors, machining conditions (rotational speed and feed rate), tool wear, and vibration. The pressure variation of compressed air causes a form accuracy error with waviness. An external shock causes a ring-shaped surface defect. The installed diamond tool for machining often has height error, feed-direction position error, and radius size error. The types of form accuracy error according to the tool's errors were analyzed by CAD simulation. The surface roughness is dependent on the tool radius, rotational speed, and feed rate. It was confirmed that the surface roughness was significantly affected by tool wear and vibration, and the surface roughness of Rz 0.0105 ㎛ was achieved.

A Case Study of Electronic-blasting, Railroad Tunnel to Pass under Existing Highway (기존 고속도로 하부 통과를 위한 철도터널 전자발파 시공사례)

  • Kim, Gab-Soo;Son, Young-Bok;Kim, Jae-Hoon
    • Explosives and Blasting
    • /
    • v.32 no.2
    • /
    • pp.16-24
    • /
    • 2014
  • In this "Wonju~Jaecheon double-lanes railroad" project, a highway is located at about 13meter above a tunnel. Initially, rock-splitting method was used for the tunnel excavation in order to minimize the possible damage on the highway. The method, however, takes a long time for the tunnel excavation and that may cause other problems like large displacement of tunnel and subsidence of highway ground before the tunnel can be stabilized by supporters. Therefore, the application of electronic blasting method(eDdevII) was recommended to control the blast vibration below 1.0cm/sec as well as to prevent the subsidence of highway ground. The analysis of the influence of tunnel excavation on the highway showed that electric blasting method is permissible for the safe management of the highway. Based on that, the tunnel construction under a highway could be carried out quickly and safely without any damages on the highway.

Fabrication of Glass Microstructure Using Laser-Induced Backside Wet Etching (레이저 습식 후면 식각공정을 이용한 미세 유리 구조물 제작)

  • Kim, Bo Sung;Park, Min Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.967-972
    • /
    • 2014
  • The good light permeability and hardness of glass allow it to be used in various fields. Non-conventional machining methods have been used for glass machining because of its brittle properties. As one non-contact machining method, a laser has advantages that include a high machining speed and the fact that no tool making is required. However, glass has light permeability. Thus, the use of a laser to machine glass has limitations. A nanosecond pulse laser can be used at low power for laser-induced backside wet etching, which is an indirect method. In previous studies, a short-wave laser that had good light absorption but a high price was used. In this study, a near-infrared laser was used to test the possibility of glass micro-machining. In particular, when deeper machining was conducted on a glass structure, more problems could result. To solve these problems, microstructure manufacturing was conducted using ultrasonic vibration.

Manufacture and performance test of the composite cantilever arm for electrical discharge wire cutting machine (방전 가공기용 복합재료 외팔보의 제작 및 성능평가)

  • 최진호
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.39-46
    • /
    • 2000
  • Electrical discharge machining (EDM) cuts metal by discharging electric current across a thin gap between tool and workpiece. Electrical discharge wire cutting, a special form of EDM, uses a continuously moving conductive wire as an electrode, and is widely used for the manufacture of punches, dies and stripper plates. In the wire cutting process, the moving wire is usually supported by cantilever arm and wire guides. As the wire traveling speed has been increased in recent years to improve productivity, the vibration of the cantilever arm occurs, which reduces the positional accuracy of the machine. Therefore, the design and manufacture of the cantilever arm with high dynamic characteristics have become important as the machining speed increases. In this paper, the cantilever arm for guiding the moving wire was designed and manufactured using carbon fiber epoxy composite in order to improve the static and dynamic characteristics. Specimens for the composite cantilever arm were manufactured and tested to investigate the effect of the number of reinforcing plies and length fitted to steel flange on the load capacity. Also, the finite element analysis using layer and contact elements was performed to compare the calculated results with the experimental ones. From the results, the prototype of the composite cantilever arm for the electrical discharge wire cutting machine was manufactured and the static and dynamic characteristics were compared with those of the conventional steel cantilever arm.

  • PDF