• Title/Summary/Keyword: 공격 모델

Search Result 857, Processing Time 0.039 seconds

An Anomaly Detection based on Probabilistic Behavior of Hidden Markov Models (은닉마코프모델을 이용한 이상징후 탐지 기법)

  • Lee, Eun-Young;Han, Chan-Kyu;Choi, Hyoung-Kee
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.1139-1142
    • /
    • 2008
  • 인터넷의 이용이 증가함에 따라 네트워크를 통한 다양한 공격 역시 증가 추세에 있다. 따라서 네트워크 이상징후를 사전에 탐지하고 상황에 따라 유연하게 대처할 수 있도록 하기 위한 연구가 절실하다. 본 연구는 은닉마코프모델을 이용해 트래픽에서 이상징후를 탐지하는 기법을 제안한다. 제안하는 기법은 시계열 예측 기법을 이용해 트래픽에서 징후를 추출한다. 징후추출 과정의 결과를 은닉마코프모델을 활용한 징후판단과정을 통해 네트워크 이상징후인지를 판단하고 결정한다. 일련의 과정을 perl로 구현하고, 실제 공격이 포함된 트래픽을 사용하여 검증한다. 하지만 결과가 확연히 증명되지는 않는데, 이는 학습과정의 부족과 실제에 가까운 트래픽의 사용으로 인해 나타나는 현상으로 연구의 본질을 흐리지는 않는다고 판단된다. 오히려 실제 상황을 가정했을 때 접근이나 적용을 판단함에 관리자의 의견을 반영할 수 있으므로 공격의 탐지와 판단에 유연성을 증대시킬 수 있다. 본 연구는 실시간 네트워크의 상황 파악이나 네트워크에서의 신종 공격 탐지 및 분류에 응용가능할 것으로 기대된다.

Adversarial Detection and Purification with GAN (적대적 공격 감지와 GAN 을 이용한 복원)

  • Junyoung Jang;Minju Ro;Junseok Kwon
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.639-640
    • /
    • 2024
  • 인위적인 공격뿐만 아니란 현실 세계에서도 이미지에 노이즈가 추가되는 경우가 있다. 이를 해결하기 위한 많은 연구가 이루어지고 있지만, 적대적 공격에 강건한 모델은 기존의 모델에 비해 원본 이미지에 대해 정확도가 떨어진다는 문제점이 있다. 따라서 본 논문은 생성 모델을 활용하여 적대적 예제에 강건한 모듈을 제안한다. 또한, 적대적 공격을 탐지하는 모듈을 활용하여 적대적 예제뿐만 아니라 원본 이미지에 대해서도 정확도를 높이는 방법을 제안한다.

Improvement of Attack Traffic Classification Performance of Intrusion Detection Model Using the Characteristics of Softmax Function (소프트맥스 함수 특성을 활용한 침입탐지 모델의 공격 트래픽 분류성능 향상 방안)

  • Kim, Young-won;Lee, Soo-jin
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.81-90
    • /
    • 2020
  • In the real world, new types of attacks or variants are constantly emerging, but attack traffic classification models developed through artificial neural networks and supervised learning do not properly detect new types of attacks that have not been trained. Most of the previous studies overlooked this problem and focused only on improving the structure of their artificial neural networks. As a result, a number of new attacks were frequently classified as normal traffic, and attack traffic classification performance was severly degraded. On the other hand, the softmax function, which outputs the probability that each class is correctly classified in the multi-class classification as a result, also has a significant impact on the classification performance because it fails to calculate the softmax score properly for a new type of attack traffic that has not been trained. In this paper, based on this characteristic of softmax function, we propose an efficient method to improve the classification performance against new types of attacks by classifying traffic with a probability below a certain level as attacks, and demonstrate the efficiency of our approach through experiments.

Spatio-temporal deep learning model for urban drainage network: (2) Improving model's robustness (우수관망 시공간 딥러닝 모델: (2) 모델 강건성 향상을 위한 연구)

  • Yubin An;Soon Ho Kwon;Donghwi Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.228-228
    • /
    • 2023
  • 국지적 지역에 내리는 강한 강도의 강우는 많은 인명 및 재산 피해를 발생시킨다. 이러한 피해를 예방하기 위해 도시 침수 예측에 관한 연구가 오랜 기간 수행되어 왔으며, 최근에는 다양한 신경망(neural network) 모델이 활발히 이용되고 있다. 강우 지속 기간이나 강도는 일정하지 않고, 공간적 특징 또한 도시마다 다르므로 안정적인 침수 예측을 위한 신경망 모델은 강건성(robustness)을 지녀야 한다. 강건한 신경망 모델이란 적대적 공격(adversarial attack)을 방어할 수 있는 능력을 갖춘 모델을 일컫는다. 따라서 본 연구에서는, 도시 침수 예측을 위한 시공간 신경망(spatio-temporal neural network) 모델의 강건성 제고를 위한 방법론을 제안한다. 먼저 적대적 공격의 유형과 방어 방법을 분류하고, 시공간 신경망 모델의 학습 데이터 특성 및 모델 구조구성 조건 등을 활용하여 최적의 강건성 제고 방안을 도출하였다. 해당 모델은 집중호우로 인해 나타날 다양한 관망에서의 침수 피해를 각각 예측하고 피해를 예방하기 위해 활용될 수 있다.

  • PDF

A research on cyber kill chain and TTP by APT attack case study (APT 공격 사례 분석을 통한 사이버 킬체인과 TTP에 대한 연구)

  • Yoon, Youngin;Kim, Jonghwa;Lee, Jaeyeon;Yu, Sukdea;Lee, Sangjin
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.91-101
    • /
    • 2020
  • We analyzed APT attack cases that occurred overseas in the past using a cyber kill chain model and a TTP model. As a result of the analysis, we found that the cyber kill chain model is effective in figuring out the overall outline, but is not suitable for establishing a specific defense strategy, however, TTP model is suitable to have a practical defense system. Based on these analysis results, it is suggested that defense technology development which is based on TTP model to build defense-in-depth system for preparing cyber attacks.

Performance Comparison of Neural Network Models for Adversarial Attacks by Autonomous Ships (자율주행 선박의 적대적 공격에 대한 신경망 모델의 성능 비교)

  • Tae-Hoon Her;Ju-Hyeong Kim;Na-Hyun Kim;So-Yeon Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.1106-1107
    • /
    • 2023
  • 자율주행 선박의 기술 발전에 따라 적대적 공격에 대한 위험성이 대두되고 있다. 이를 해결하기 위해 본 연구는 다양한 신경망 모델을 활용하여 적대적 공격을 탐지하는 성능을 체계적으로 비교, 분석하였다. CNN, GRU, LSTM, VGG16 모델을 사용하여 실험을 진행하였고, 이 중 VGG16 모델이 가장 높은 탐지 성능을 보였다. 본 연구의 결과를 통해 자율주행 선박에 적용될 수 있는 보안모델 구축에 대한 신뢰성 있는 방향성을 제시하고자 한다.

Risk Detection Modeling Against DoS Attacks (서비스 거부 공격 대응을 위한 위험 탐지 모델링)

  • 문경원;황병연
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.478-480
    • /
    • 2004
  • 인터넷 기술의 발전과 더불어 서비스 거부 공격(DoS : Denial of Service) 방법과 유형이 날로 다양해지고 있다. DoS 공격은 사용자 시스템에 네트워크 트래픽의 과도한 부하를 주어 서비스를 마비시키거나 시스템을 다운시킨다. DoS공격은 빠른 시간 안에 시스템을 위협하는 특징 때문에, 빠른 대처가 필요하다. 이러한 점에 착안하여 본 논문에서는 DoS 공격상황에서의 위험상황을 모델링 한다. 제안된 모델링은 패킷분석에 기반 하여 의미 있는 요소들을 찾아내고, 수식화 해서 위험 탐지 모델을 정의한다. 제안된 모델링을 통해서 DoS공격을 효과적으로 대처할 수 있을 것으로 기대된다.

  • PDF

딥러닝 기반 얼굴인식 모델에 대한 변조 영역 제한 기만공격

  • Ryu, Gwonsang;Park, Hosung;Choi, Daeseon
    • Review of KIISC
    • /
    • v.29 no.3
    • /
    • pp.44-50
    • /
    • 2019
  • 최근 딥러닝 기술은 다양한 분야에서 놀라운 성능을 보여주고 있어 많은 서비스에 적용되고 있다. 얼굴인식 또한 딥러닝 기술을 접목하여 높은 수준으로 얼굴인식이 가능해졌다. 하지만 딥러닝 기술은 원본 이미지를 최소한으로 변조시켜 딥러닝 모델의 오인식을 발생시키는 적대적 예제에 취약하다. 이에 따라, 본 논문에서는 딥러닝 기반 얼굴인식 시스템에 대해 적대적 예제를 이용하여 기만공격 실험을 수행하였으며 실제 얼굴에 분장할 수 있는 영역을 고려하여 설정된 변조 영역에 따른 기만공격 성능을 분석한다.

NIDS에서 False Positives를 줄이기 위한 동적 중요도 계산 방법에 대한 연구

  • 이은영;김병학;박차일;정상갑;임채호;이광형
    • Review of KIISC
    • /
    • v.13 no.1
    • /
    • pp.22-31
    • /
    • 2003
  • NIDS(Network Intrusion Detection System)은 실시간에 침입을 탐지하는 방안을 제시하는 시스템이지만 침입에 대한 탐지보다 더 많은 false positives 정보를 발생시키고 있다. 많은 false positives로부터 실제 침입을 찾아내는 것은 NIDS를 효율적으로 운영하기 위해서 필요한 새로운 일이 되고 있다. 본 논문은 NIDS에서의 false positive를 줄이기 위한 동적인 중요도 계산 모델을 제시한다. 제안된 방법은 공격의 4가지 특성(공격 의도, 공격자의 지식정도, 공격의 영향 그리고 공격의 성공 가능성)을 이용한다. 만약 공격자가 공격의 의도가 크거나 많은 지식을 가지고 있다면, 보통의 경우보다 공격에 성공할 확률이 높다. 또한 공격의 대상이 특정 공격에 취약하거나 특정 공격이 대상 시스템에 미칠 영향이 큰 경우에는 더욱더 중요한 공격이 된다고 할 수 있다. 이런 4가지의 특성을 이용하여 제시한 본 논문은 결과는 상당히 많은 부분에 대한 false positives를 줄이는 효과를 가지고 왔으며, 또한 공격에 대한 중요도의 정확성을 향상시켜서 NIDS의 관리를 쉽게 할 수 있도록 한다.

A Study on Effective Adversarial Attack Creation for Robustness Improvement of AI Models (AI 모델의 Robustness 향상을 위한 효율적인 Adversarial Attack 생성 방안 연구)

  • Si-on Jeong;Tae-hyun Han;Seung-bum Lim;Tae-jin Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.25-36
    • /
    • 2023
  • Today, as AI (Artificial Intelligence) technology is introduced in various fields, including security, the development of technology is accelerating. However, with the development of AI technology, attack techniques that cleverly bypass malicious behavior detection are also developing. In the classification process of AI models, an Adversarial attack has emerged that induces misclassification and a decrease in reliability through fine adjustment of input values. The attacks that will appear in the future are not new attacks created by an attacker but rather a method of avoiding the detection system by slightly modifying existing attacks, such as Adversarial attacks. Developing a robust model that can respond to these malware variants is necessary. In this paper, we propose two methods of generating Adversarial attacks as efficient Adversarial attack generation techniques for improving Robustness in AI models. The proposed technique is the XAI-based attack technique using the XAI technique and the Reference based attack through the model's decision boundary search. After that, a classification model was constructed through a malicious code dataset to compare performance with the PGD attack, one of the existing Adversarial attacks. In terms of generation speed, XAI-based attack, and reference-based attack take 0.35 seconds and 0.47 seconds, respectively, compared to the existing PGD attack, which takes 20 minutes, showing a very high speed, especially in the case of reference-based attack, 97.7%, which is higher than the existing PGD attack's generation rate of 75.5%. Therefore, the proposed technique enables more efficient Adversarial attacks and is expected to contribute to research to build a robust AI model in the future.