폭발적으로 성장하는 소셜 미디어 서비스로 인해 개인간의 연결이 강화된 환경에서는 URL로써 전파되는 피싱 공격의 위험성이 크게 강조된다. 최근 텍스트 분류 및 모델링 분야에서 그 성능을 입증받은 딥러닝 알고리즘은 피싱 URL의 구문적, 의미적 특징을 각각 모델링하기에 적절하지만, 기존에 사용하는 규칙 기반 앙상블 방법으로는 문자와 단어로부터 추출되는 특징간의 비선형적인 관계를 효과적으로 융합하는데 한계가 있다. 본 논문에서는 피싱 URL의 구문적, 의미적 특징을 체계적으로 융합하기 위한 컨볼루션 신경망 기반의 퓨전 신경망을 제안하고 기계학습 방법 중 최고의 분류정확도 (0.9804)를 달성하였다. 학습 및 테스트 데이터셋으로 45,000건의 정상 URL과 15,000건의 피싱 URL을 수집하였고, 정량적 검증으로 10겹 교차검증과 ROC커브, 정성적 검증으로 오분류 케이스와 딥러닝 내부 파라미터를 시각화하여 분석하였다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.17
no.2
/
pp.3-17
/
2007
Receiver access control scheme is proposed to protect multicast distribution tree from DoS(Denial-of Service) attack induced by unauthorized use of IGMP(Internet group management protocol), by extending the security-related functionality of IGMP. Based on a specific network and business model adopted for commercial deployment of IP multicast applications, key management scheme is also presented for bootstrapping the proposed access control as well as accounting and billing for CP(Content Provider), NSP(Network Service Provider), and group members.
부채널 분석은 하드웨어에서 발생하는 빛, 열, 전자기파와 같은 각종 부채널 정보를 이용하는 공격이다. 부채널 분석은 강력한 보안 위협에 속하지만, 부채널 정보 분석에 오랜 시간과 노력이 소요된다. 때문에 부채널 분석에 머신러닝을 접목하고자 하는 연구가 진행되었다. 머신러닝은 대량의 데이터를 학습하고 패턴을 파악하는데 용이하기 때문에 대량의 부채널 정보를 분석하는데 유리하다. 본 논문에서는 부채널 파형 데이터를 사용하여 암호 분류를 하는 머신러닝 모델을 소개한다.
현재 인터넷 공격이 날로 증가하고 있는 추세이다. 더불어 그에 관련된 제품들도 많이 나오고 있는 상황이다. 그러나 정작 이런 제품들에 질적인 면에서 품질을 고려하는 노력이 미흡한 사실이다. 본 연구에서는 침입차단시스템(FW) 제품의 현황을 분석하고 효율성 품질평가 방법을 개발하고자 한다. 이를 위해 침입차단시스템 제품 유형을 대상으로 특성과 핵심 기술 요소를 분석하고 현황 조사 및 분석을 바탕으로 침입차단시스템 제품의 품질평가 기준과 평가방법론을 개발하였다.
IT 기술의 발전으로 M2M 시장이 급부상하고 있는 가운데 M2M 응용분야 중 텔레매틱스의 개념 및 차량 네트워크 보안의 취약성을 알아보았다. 차량 및 IT 기술의 융합과 이동통신망 기술의 발전은 사용자에게 제공되는 서비스의 질은 향상 시켰지만, 이로 인한 보안 위험성은 더 많아지고 다양해졌다. 이에 본 논문에서는 텔레매틱스의 새로운 비즈니스 모델과 이로 인해 발생 될 수 있는 차량 이동통신망 보안의 취약성을 분석하였다. 이 중 발생할 수 있는 위장공격을 예방하기 위해 M2M 기기와 스마트폰의 상호 인증 기법을 제시하였다.
유무선 네트워크의 발달로 온라인 환경에서 다양한 정보 교환 및 데이터 공유를 보다 쉽게 사용할 수 있다. 이러한 네트워크의 신뢰성을 보장하고 악의적인 사용자의 공격에 저항하기 위해 가장 중요한 필요조건은 구성원 상호 신뢰 관계를 확립하는 것이다. 다른 사람의 신뢰도를 정확하게 평가하고 신뢰도가 전체적인 신뢰도에 반영된다면 많은 위험을 회피할 수 있다. 본 논문에서는 악의적인 피어가 제공하는 신뢰할 수 없는 자원의 확산을 감소시키기 위해 네트워크에 참여하는 노드에 대한 신뢰도를 측정한다. 신뢰도는 노드들이 선택하는 다른 노드의 선호도를 이용하여 노드들의 신뢰도에 가중한다. 실험결과는 계산된 신뢰도를 이용하여 신뢰할 수 있는 노드에게 유효한 파일을 수신할 수 있어 네트워크의 신뢰성을 보장하고 데이터에 대한 정확성을 높일 수 있다.
AI 모델 서비스 제공에 강제되는 높은 메모리 사용량을 해결하기 위해 일반적으로 클라우드 컴퓨팅 기술을 이용한다. 클라우드 기반 서비스는 개발자로 하여금 메모리 사용량에 대한 걱정을 덜어주고 서비스 이용자에게는 편리하게 양질의 서비스를 제공받을 수 있게 한다. 하지만 보안 대책이 미흡한 클라우드 서비스는 서비스를 제공받아 얻는 이익만을 생각하기에는 보안사고로 인한 피해가 막대할 수 있다. AI 기술이 인간의 삶에 깊이 파고든 현 상황에서 우리가 대부분 이용하는 클라우드에 기반 서비스의 보안 문제는 그 중요도가 굉장히 높다고 할 수 있다. 이를 위해 본 논문에서는 클라우드 기반 머신러닝 서비스를 분석하여 어떤 공격이 이루어질 수 있는지 분석하고 그에 대한 연구된 방어법들의 효과를 확인하여 효과적인 것들을 선별하고 접목시키는 시도를 한다.
최근 악성코드에 의한 피해사례가 매년 증가하고 있다. 전통적인 시그니처 기반 안티바이러스 솔루션은 제로데이 공격이나 랜섬웨어처럼 전례가 없는 새로운 위협에 속수무책일 정도로 취약하다. 그럼에도 불구하고 많은 기업이 다중 엔드포인트 보안 전략의 일환으로 시그니처 기반 안티바이러스 솔루션을 유지하고 있다. 이에 응하고자 다양한 악성코드 분석기술이 출현해왔으며, 최근의 연구들은 부분 머신러닝을 이용하여 기존에 진행했던 시그니쳐 기반의 한계를 보완하고 노력하고 있다. 본 논문은 머신러닝을 이용한 바이러스 분석 모델과 머신러닝 알고리즘 중 GRU를 이용한 솔루션 시스템을 제안한다. 기존 DB Server를 통해 머신러닝을 학습 시키며 다양한 샘플과 형식을 이용하여 머신러닝을 학습하고 이를 이용해 새로운 악성코드, 변조된 악성코드의 탐지율을 높일 수 있다.
Recent research has shown that deep learning models are vulnerable to adversarial attacks not only in the digital but also in the physical domain. This becomes very critical for applications that have a very high safety concern, such as self-driving cars. In this study, we propose a physical adversarial attack technique for one of the common tasks in self-driving cars, namely segmentation of the urban scene. Our method can create a texture on a wall so that it can be misclassified as a road. The demonstration of the technique on a state-of-the-art cityscape pretrained model shows a fairly high success rate, which should raise awareness of more potential attacks in self-driving cars.
Dong-Yeon Kim;Se-jin Kim;Do-Kyung Lee;Chae-Yoon Lee;Seung-Yeon Lim;Hyuk-Joon Seo
Annual Conference of KIPS
/
2023.11a
/
pp.801-802
/
2023
시큐어 코딩은 해킹 등 사이버 공격의 원인인 보안 취약점을 제거해 안전한 소프트웨어를 개발하는 SW 개발 기법을 의미한다. 개발자의 실수나 논리적 오류로 인해 발생할 수 있는 문제점을 사전에 차단하여 대응하고자 하는 것이다. 그러나 현재 시큐어 코딩에는 오탐과 미탐의 문제가 발생한다는 단점이 있다. 따라서 본 논문에서는 오탐과 미탐이 발생하는 단점을 해결하고자 머신러닝 알고리즘을 활용하여 AI 기반으로 개발자의 실수나 논리적 오류를 탐지하는 시큐어 코딩 도구를 만들고자 한다. 다양한 모델을 사용하여 보안 취약점을 모아놓은 Juliet Test Suite를 전처리하여 학습시켰고, 정확도를 높이기 위한 과정 중에 있다. 향후 연구를 통해 정확도를 높여 정확한 시큐어 코딩 점검 도구를 개발할 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.