• Title/Summary/Keyword: 공간 통계

Search Result 1,397, Processing Time 0.028 seconds

Natural Spread Pattern of Damaged Area by Pine Wilt Disease Using Geostatistical Analysis (공간통계학적 방법에 의한 소나무 재선충 피해의 자연적 확산유형분석)

  • Son, Min-Ho;Lee, Woo-Kyun;Lee, Seung-Ho;Cho, Hyun-Kook;Lee, Jun-Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.3
    • /
    • pp.240-249
    • /
    • 2006
  • Recently, dispersion of damaged forest by pine wilt disease has been regarded as a serious social issue. Damages by pine wilt disease have been spreaded by natural area expansion of the vectors in the damaged area, while the national wide damage spread has induced by human-involved carrying infected trees out of damaged area. In this study, damaged trees were detected and located on the digital map by aerial photograph and terrestrial surveys. The spatial distribution pattern of damaged trees, and the relationship of spatial distribution of damaged trees and some geomorphological factors were geostatistically analysed. Finally, we maked natural spread pattern map of pine wilt disease using geostatistical CART(Classification and Regression Trees) model. This study verified that geostatistical analysis and CART model are useful tools for understanding spatial distribution and natural spread pattern of pine wilt diseases.

A Study on Spatial Statistical Perspective for Analyzing Spatial Phenomena in the Framework of GIS: an Empirical Example using Spatial Scan Statistic for Detecting Spatial Clusters of Breast Cancer Incidents (공간현상 분석을 위한 GIS 기반의 공간통계적 접근방법에 관한 고찰: 공간 군집지역 탐색을 위한 공간검색통계량의 실증적 사례분석)

  • Lee, Gyoung-Ju;Kweon, Ihl
    • Spatial Information Research
    • /
    • v.20 no.1
    • /
    • pp.81-90
    • /
    • 2012
  • When analyzing geographical phenomena, two properties need to be considered. One is the spatial dependence structure and the other is a variation or an uncertainty inhibited in a geographic space. Two problems are encountered due to the properties. Firstly, spatial dependence structure, which is conceptualized as spatial autocorrelation, generates heterogeneous geographic landscape in a spatial process. Secondly, generic statistics, although suitable for dealing with stochastic uncertainty, tacitly ignores location information im plicit in spatial data. GIS is a versatile tool for manipulating locational information, while spatial statistics are suitable for investigating spatial uncertainty. Therefore, integrating spatial statistics to GIS is considered as a plausible strategy for appropriately understanding geographic phenomena of interest. Geographic hot-spot analysis is a key tool for identifying abnormal locations in many domains (e.g., criminology, epidemiology, etc.) and is one of the most prominent applications by utilizing the integration strategy. The article aims at reviewing spatial statistical perspective for analyzing spatial processes in the framework of GIS by carrying out empirical analysis. Illustrated is the analysis procedure of using spatial scan statistic for detecting clusters in the framework of GIS. The empirical analysis targets for identifying spatial clusters of breast cancer incidents in Erie and Niagara counties, New York.

Adaptive Searching Estimation in Stratified Spatial Sample design (적합탐색 관찰을 이용한 층화 공간표본설계에서의 추정)

  • 변종석
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.353-369
    • /
    • 2000
  • We systematized an stratified spatial sample design(SSSD) that uses the adequate stratification criteria such as the shapeness or the dispersion of an interesting region in a spatial population. And we proposed an adaptive searching estimation method in the SSSD to estimate the area of region of interest in two-dimensional surfaces. When wc adopt the proposed adaptive searching estimation method in SSSD, the observing sample size is more decreased than a classical sample design that all the designed sample size is observed. Nevertheless it has been shown that we can produce the moderate result but the efficiency is a slight reduced.

  • PDF

On the Efficiency of Outlier Cleaners in Spatial Data Analysis (공간통계분석에서 이상점 수정방법의 효율성비교)

  • 이진희;신기일
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.2
    • /
    • pp.327-336
    • /
    • 2004
  • Many researchers have used the robust variogram to reduce the effect of outliers in spatial data analysis. Recently it is known that estimating the variogram after replacing outliers is more efficient. In this paper, we suggest a new data cleaner for geostatistic data analysis and compare the efficiency of outlier cleaners.

A spatial distribution study of Aquifer Using Geostatistical analysis at the Ulsan Manufacturing Industry City (지구통계기법을 이용한 대수층의 공간적 분포연구)

  • 김병우;정상용;강동환;이민희;성익환;조병욱;이승엽
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.229-232
    • /
    • 2003
  • 본 연구는 울산지역 지하수오염 저감기술의 개발에 필요한 대수층의 공간적 분포특성을 파악하는 데 목적이 있다. 울산 공업도시의 대수층에서 공간적 분포특성을 파악하기 위하여 시추조사가 많이 필요 하지만 비용 및 시간 관계상 어려움이 있기 때문에, 지질조사 보고서나 논문 등에서 지하수자료와 시추 자료를 획득하여 지구통계기법을 이용한 울산지역 대수층의 공간적 분포를 모사하였다. 그리고 인구가 밀집되어 있는 남구와 중구를 중심으로 대수층 단면 분포를 모사하였다. 이와 같은 분석결과는 표토층 하부경계부와 풍화대 하부경계부에서 유사한 분포심도로 나타났으며, 지하수 수위는 표토층 하부경계와 암반층 상부경계부인 풍화대에 분포하는 것으로 나타났다.

  • PDF

An Explorator Spatial Analysis of Shigellosis (세균성 이질의 탐색적 공간분석)

  • 박기호
    • Journal of the Korean Geographical Society
    • /
    • v.34 no.5
    • /
    • pp.473-491
    • /
    • 1999
  • 세균성 이질은 국내 제1종 법정 전염병으로 분류되어 관리되고 있는 질환으로서 1998년 이후 그 발병 사례가 급속히 증가하고 있다. 본 연구는 1999년 3월 부산시 사상구에서 집단 발병한 세균성 이질을 대상으로 하여, 각 환자들의 발병 시점과 장소의 분포패턴에 대한 지리학적 고찰을 목적으로 한다. 환자분포의 특징적 공간패턴과 그들의 시계열적 확산 양상 등을 탐색하기 위한 방법론은 보건지리학과 지도학 및 공간통계학에 기반을 둔 공간분석기법을 중심으로 설정하였다. 분석자료는 해당 지역의 수치지형도, 지적도, 인구 센서스 자료를 포함한 GIS 데이터베이스로 구축되었다. 인구분포를 감안한 밀도구분도를 바탕으로 개별환자의 위치자료와 동 단위로 집계된 자료를 자료의 형태에 따라 분석기법을 달리하였으며, 환자 발생 밀도, 상대적 위험지수 등을 지도화하여 역학자료의 시각적 통계적 분석을 수행하였다. 환자분포의 공간적 중심위치와 분산의 변화 등 기술적 통계분석과 함께 제1차 공간속성을 커널추정법으로 찾아보았다. 이와 더불어 ‘공간적 의존성’과 관련된 제2차 공간속성은 K-함수와 시뮬레이션을 통해 분석하여 군집성 등이 통계적으로 확인되었다. 본 연구를 통해 역학조사시 GIS의 활용사례가 제시되었으며, 모집단 인구를 고려한 확률지도 작성 기법과 다양한 데이터 가시화 방법, 그리고 시계열별 발생 환자들의 지리적 변이를 분석 하는데 따르는 문제들이 논의되었다.

  • PDF

공간 통계 분석을 이용한 DEM 오차 패턴 연구

  • 안은자
    • Proceedings of the KGS Conference
    • /
    • 2003.05a
    • /
    • pp.207-210
    • /
    • 2003
  • 지리학적 정보는 지구의 표면이나 가까이에 나타나는 현상과 사상에 대한 정보로서 정의된다(Goodchild et al., 1999). 지리학에서, 이러한 지리학적 정보는 특정한 현상을 연구하기 위한 공간자료로 이용되는데, 이는 공간적 패턴을 통해 유형화된다. 이러한 공간자료는 현지답사를 통해 수집ㆍ분석되며, 관찰자의 주관적 판단, 기술적인 오류로 인해, 오차의 필연적 발생 가능성을 안고 있다(Maffini, 1989; Bolstad, 1990; Dunn, 1990; Keeler, 1991). (중략)

  • PDF

A Study on Estimates to Longevity Population of Small Area and Distribution Patterns using Vector based Dasymetric Mapping Method (벡터기반 대시매트릭 기법을 이용한 소지역 장수인구 추정 및 분포패턴에 관한 연구)

  • Choi, Don-Jeong;Kim, Young-Seup;Suh, Yong-Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.479-485
    • /
    • 2011
  • A number of case studies that find distribution of longevity population and influencing factors through the spatial data fusion using GIS techniques are growing. The majority cases of these studies are adopt census administrative boundary data for the spatial analysis. However, these methods cannot fully explain the phenomenon of longevity because there are a variety of spatial characteristics within the census administrative boundaries. Therefore, studies of spatial unit are required that realistically reflect the phenomenon of human longevity. The dasymetric mapping method enables to product of spatial unit more realistic than census administrative boundary map and statistic estimates of small area utilizing diversity spatial information. In this study, elderly population of small area has been estimated within statistically significant level that applied the vector based dasymetric mapping method. Also, the cluster analysis confirmed that the variation of local spatial relationship within census administrative boundary. The result of this study implied that the need for local-level studies of the human longevity and the validity of the dashmetric mapping techniques.

Geometrically and Topographically Consistent Map Conflation for Federal and Local Governments (Geometry 및 Topology측면에서 일관성을 유지한 방법을 이용한 연방과 지방정부의 공간데이터 융합)

  • Kang, Ho-Seok
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.804-818
    • /
    • 2004
  • As spatial data resources become more abundant, the potential for conflict among them increases. Those conflicts can exist between two or many spatial datasets covering the same area and categories. Therefore, it becomes increasingly important to be able to effectively relate these spatial data sources with others then create new spatial datasets with matching geometry and topology. One extensive spatial dataset is US Census Bureau's TIGER file, which includes census tracts, block groups, and blocks. At present, however, census maps often carry information that conflicts with municipally-maintained detailed spatial information. Therefore, in order to fully utilize census maps and their valuable demographic and economic information, the locational information of the census maps must be reconciled with the more accurate municipally-maintained reference maps and imagery. This paper formulates a conceptual framework and two map models of map conflation to make geometrically and topologically consistent source maps according to the reference maps. The first model is based on the cell model of map in which a map is a cell complex consisting of 0-cells, 1-cells, and 2-cells. The second map model is based on a different set of primitive objects that remain homeomorphic even after map generalization. A new hierarchical based map conflation is also presented to be incorporated with physical, logical, and mathematical boundary and to reduce the complexity and computational load. Map conflation principles with iteration are formulated and census maps are used as a conflation example. They consist of attribute embedding, find meaning node, cartographic 0-cell match, cartographic 1-cell match, and map transformation.

On the Hierarchical Modeling of Spatial Measurements from Different Station Networks (다양한 관측네트워크에서 얻은 공간자료들을 활용한 계층모형 구축)

  • Choi, Jieun;Park, Man Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.93-109
    • /
    • 2013
  • Geostatistical data or point-referenced data have the information on the monitoring stations of interest where the observations are measured. Practical geostatistical data are obtained from a wide variety of observational monitoring networks that are mainly operated by the Korean government. When we analyze geostatistical data and predict the expectations at unobservable locations, we can improve the reliability of the prediction by utilizing some relevant spatial data obtained from different observational monitoring networks and blend them with the measurements of our main interest. In this paper, we consider the hierarchical spatial linear model that enables us to link spatial variables from different resources but with similar patterns and guarantee the precision of the prediction. We compare the proposed model to a classical linear regression model and simple kriging in terms of some information criteria and one-leave-out cross-validation. Real application deals with Sulfur Dioxide($SO_2$) measurements from the urban air pollution monitoring network and wind speed data from the surface observation network.