• Title/Summary/Keyword: 공간필터링

Search Result 310, Processing Time 0.033 seconds

A Study on User Location Estimation using Beacon Trilateration in Indoor Environment (비콘 삼변측량을 이용한 실내 환경에서의 사용자 위치 추정)

  • Lim, Su-Jong;Sung, Min-Gwan;Yun, Sang-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.180-182
    • /
    • 2021
  • This paper proposes a method for estimating the location of a user using a beacon to provide a service in an indoor environment. To estimate the location using the beacon, a Gaussian filter was applied to the RSSI value of the beacon, and the distance conversion function was obtained through the filtered RSSI value to estimate the tag location by trilateration. Then, in the indoor space where the beacons are installed, the location estimation accuracy of 8 places where 3 beacons are at a certain distance was confirmed. As a result, it was possible to confirm the position estimation accuracy of ±0.097 standard deviation and 0.242 distance error.

  • PDF

Performance Analysis of MVDR and RLS Beamforming Using Systolic Array Structure (시스토릭 어레이 구조를 갖는 최소분산 비왜곡응답 및 최소자승 회귀 빔형성기법 성능 분석)

  • 이호중;서상우;이원철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • This paper analyses the performance of either the minimum variance distortionless response (MVDR) or the recursive least square (RLS) beamformer structured on the systolic array. Provided that the snapshot vector including the desired user's signal and the interferences with the noise is received at the array antenna. In order to improve the quality of received signal, MVDR or RLS algorithm can be utilized to update the beamformer weights recursively. Furthermore to increase the channel capacity, by the usage of the above schemes, the effect of the spatial filtering can be obtained which constructively combining multipath components corresponding to the desired user whereas the multiple access interferences (MAI) is nulled out on spatial domain. This paper introduces the MVDR and RLS beamformer structured on systolic array conducting the spatial filtering, and its performance under the multipath fading channel in the presence of multiple access interferences will be analyzed. To show the superior spatial filtering performances of the proposed scheme employing the systolic way structured beamformer, the computer simulations are carried out. And the validity of practical deployment of the proposed scheme will be confirmed throughout showing the BER behaviors and the beampatterns.

Task Balancing Scheme of MPI Gridding for Large-scale LiDAR Data Interpolation (대용량 LiDAR 데이터 보간을 위한 MPI 격자처리 과정의 작업량 발란싱 기법)

  • Kim, Seon-Young;Lee, Hee-Zin;Park, Seung-Kyu;Oh, Sang-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.1-10
    • /
    • 2014
  • In this paper, we propose MPI gridding algorithm of LiDAR data that minimizes the communication between the cores. The LiDAR data collected from aircraft is a 3D spatial information which is used in various applications. Since there are many cases where the LiDAR data has too high resolution than actually required or non-surface information is included in the data, filtering the raw LiDAR data is required. In order to use the filtered data, the interpolation using the data structure to search adjacent locations is conducted to reconstruct the data. Since the processing time of LiDAR data is directly proportional to the size of it, there have been many studies on the high performance parallel processing system using MPI. However, previously proposed methods in parallel approach possess possible performance degradations such as imbalanced data size among cores or communication overhead for resolving boundary condition inconsistency. We conduct empirical experiments to verify the effectiveness of our proposed algorithm. The results show that the total execution time of the proposed method decreased up to 4.2 times than that of the conventional method on heterogeneous clusters.

Analysis of Noise Influence on a Chaotic Series and Application of Filtering Techniques (카오스 시계열에 대한 잡음영향 분석과 필터링 기법의 적용)

  • Choi, Min Ho;Lee, Eun Tae;Kim, Hung Soo;Kim, Soo Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.37-45
    • /
    • 2011
  • We studied noise influence on nonlinear chaotic system by using Logistic data series which is known as a typical nonlinear chaotic system. We regenerated Logistic data series by the method of adding noise according to noise level. And, we performed some analyses such as phase space reconstruction, correlation dimension, BDS statistics, and DVS Algorithms which are known as the methods of nonlinear deterministic or chaotic analysis. If we see the results of analysis, the characteristics of data series are gradually changed from nonlinear chaotic data series to random stochastic data series according to increasing noise level. We applied Low Pass Filter (LPF) and Kalman Filter techniques for the investigation of removing effect of the added noise to data series. Typical nonparametric method cannot distinguish nonlinear random series but the BDS statistic can distinguish the nonlinear randomness of the time series. Therefore this study used the BDS statistic which is well known as nonlinear statistical method for the investigation of randomness of time series for the effect of removing noise of data series. We found that Kalman filter is better method to remove the noise of chaotic data series even for high noise level.

Processing of Side Scan Sonar and SBP Data for the Artificial Reef Area (인공어초지역에 대한 사이드스캔소나와 SBP 탐사 자료처리)

  • Shin, Sung-Ryul;Lim, Min-Hyuk;Jang, Won-Il;Lim, Jong-Se;Yoon, Ji-Ho;Lee, Seong-Min
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.2
    • /
    • pp.192-198
    • /
    • 2009
  • Side scan sonar and SBP (sub-bottom profiler) play a very important role in the survey for seafloor imaging and sub-bottom profiling. In this study, we have acquired side scan sonar and SBP data from the artificial reef area. We applied digital image processing techniques to side scan sonar data in order to improve an image quality. For the enhancement of data quality and image resolution, we applied the typical seismic data processing sequence including gain recovery, muting, spectrum analysis, predictive deconvolution, migration to SBP data. We could easily estimate if artificial reef structures were settled properly and their distribution on the seafloor from the integrated interpretation of side scan sonar and SBP data. From the sampling analysis of seabed sediments, texture filtering of side scan sonar data and SBP data interpretation, we could evaluate the sediment type, distribution and thickness of seafloor sediments in detail.

Low-Complexity H.264/AVC Deblocking Filter based on Variable Block Sizes (가변블록 기반 저복잡도 H.264/AVC 디블록킹 필터)

  • Shin, Seung-Ho;Doh, Nam-Keum;Kim, Tae-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.41-49
    • /
    • 2008
  • H.264/AVC supports variable block motion compensation, multiple reference images, 1/4-pixel motion vector accuracy, and in-loop deblocking filter, compared with the existing compression technologies. While these coding technologies are major functions of compression rate improvement, they lead to high complexity at the same time. For the H.264 video coding technology to be actually applied on low-end / low-bit rates terminals more extensively, it is essential to improve tile coding speed. Currently the deblocking filter that can improve the moving picture's subjective image quality to a certain degree is used on low-end terminals to a limited extent due to computational complexity. In this paper, a performance improvement method of the deblocking filter that efficiently reduces the blocking artifacts occurred during the compression of low-bit rates digital motion pictures is suggested. In the method proposed in this paper, the image's spatial correlational characteristics are extracted by using the variable block information of motion compensation; the filtering is divided into 4 modes according to the characteristics, and adaptive filtering is executed in the divided regions. The proposed deblocking method reduces the blocking artifacts, prevents excessive blurring effects, and improves the performance about $30{\sim}40%$ compared with the existing method.

Estimation of Individual Street Trees Using Simulated Airborne LIDAR Data (모의 항공 라이다 자료를 이용한 개별 가로수의 추정)

  • Cho, Du-Young;Kim, Eui-Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.269-277
    • /
    • 2012
  • Street trees are one of useful urban facilities that reduce carbon dioxide and provide green space in urban areas. They are usually managed by local government, and it is effective to use aerial LIDAR data in order to acquire information such as the location, height and crown width of street tree systematically. In this research, algorithm was proposed that improves the accuracy of extracting top points of street trees and separates the region of individual street trees from aerial LIDAR data. In order to verify the proposed algorithm, a simulated aerial LIDAR data that exactly knows the number, height and crown width of street trees was created. As for the procedure of data processing, filtering that separates ground and non-ground points from LIDAR data was first conducted in order to separate the region of individual street trees. An estimated non-street tree points were then removed from non-ground points, and the top points of street trees were estimated. Region of individual street trees was determined by using the intersecting point of straight line that connects top point and ground point of street tree. Through the experiment by using simulated data, it was possible to refine wrongly estimated points occurred by determining tree tops and to determine the positional information, height, crown width of street trees through the determination of region of street trees.

A Study on Extending Successive Observation Coverage of MODIS Ocean Color Product (MODIS 해색 자료의 유효관측영역 확장에 대한 연구)

  • Park, Jeong-Won;Kim, Hyun-Cheol;Park, Kyungseok;Lee, Sangwhan
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.513-521
    • /
    • 2015
  • In the processing of ocean color remote sensing data, spatio-temporal binning is crucial for securing effective observation area. The validity determination for given source data refers to the information in Level-2 flag. For minimizing the stray light contamination, NASA OBPG's standard algorithm suggests the use of large filtering window but it results in the loss of effective observation area. This study is aimed for quality improvement of ocean color remote sensing data by recovering/extending the portion of effective observation area. We analyzed the difference between MODIS/Aqua standard and modified product in terms of chlorophyll-a concentration, spatial and temporal coverage. The recovery fractions in Level-2 swath product, Level-3 daily composite product, 8-day composite product, and monthly composite product were $13.2({\pm}5.2)%$, $30.8({\pm}16.3)%$, $15.8({\pm}9.2)%$, and $6.0({\pm}5.6)%$, respectively. The mean difference between chlorophyll-a concentrations of two products was only 0.012%, which is smaller than the nominal precision of the geophysical parameter estimation. Increase in areal coverage also results in the increase in temporal density of multi-temporal dataset, and this processing gain was most effective in 8-day composite data. The proposed method can contribute for the quality enhancement of ocean color remote sensing data by improving not only the data productivity but also statistical stability from increased number of samples.

Implementation of the Unborrowed Book Recommendation System for Public Libraries: Based on Daegu D Library (공공도서관 미대출 도서 추천시스템 구현 : 대구 D도서관을 중심으로)

  • Jin, Min-Ha;Jeong, Seung-Yeon;Cho, Eun-Ji;Lee, Myoung-Hun;Kim, Keun-Wook
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.175-186
    • /
    • 2021
  • The roles and functions of domestic public libraries are diversifying, but various problems have emerged due to internally biased book lending. In addition, due to the 4th Industrial Revolution, public libraries have introduced a book recommendation system focusing on popular books, but the variety of books that users can access is limited. Therefore, in this study, the public library unborrowed book recommendation system was implemented limiting its spatial scope to Duryu Library in Daegu City to enhance the satisfaction of public library users, by using the loan records data (213,093 cases), user information (35,561 people), etc. and utilizing methods like cluster analysis, topic modeling, content-based filtering recommendation algorithm, and conducted a survey on actual users' satisfaction to present the possibility and implications of the unborrowed book recommendation system. As a result of the analysis, the majority of users responded with high satisfaction, and was able to find the satisfaction was relatively high in the class classified by specific gender, age, occupation, and usual reading. Through the results of this study, it is expected that some problems such as biased book lending and reduced operational efficiency of public libraries can be improved, and limitations of the study was also presented.

Dense-Depth Map Estimation with LiDAR Depth Map and Optical Images based on Self-Organizing Map (라이다 깊이 맵과 이미지를 사용한 자기 조직화 지도 기반의 고밀도 깊이 맵 생성 방법)

  • Choi, Hansol;Lee, Jongseok;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.283-295
    • /
    • 2021
  • This paper proposes a method for generating dense depth map using information of color images and depth map generated based on lidar based on self-organizing map. The proposed depth map upsampling method consists of an initial depth prediction step for an area that has not been acquired from LiDAR and an initial depth filtering step. In the initial depth prediction step, stereo matching is performed on two color images to predict an initial depth value. In the depth map filtering step, in order to reduce the error of the predicted initial depth value, a self-organizing map technique is performed on the predicted depth pixel by using the measured depth pixel around the predicted depth pixel. In the process of self-organization map, a weight is determined according to a difference between a distance between a predicted depth pixel and an measured depth pixel and a color value corresponding to each pixel. In this paper, we compared the proposed method with the bilateral filter and k-nearest neighbor widely used as a depth map upsampling method for performance comparison. Compared to the bilateral filter and the k-nearest neighbor, the proposed method reduced by about 6.4% and 8.6% in terms of MAE, and about 10.8% and 14.3% in terms of RMSE.