• Title/Summary/Keyword: 공간클러스터

Search Result 375, Processing Time 0.021 seconds

Verifying Execution Prediction Model based on Learning Algorithm for Real-time Monitoring (실시간 감시를 위한 학습기반 수행 예측모델의 검증)

  • Jeong, Yoon-Seok;Kim, Tae-Wan;Chang, Chun-Hyon
    • The KIPS Transactions:PartA
    • /
    • v.11A no.4
    • /
    • pp.243-250
    • /
    • 2004
  • Monitoring is used to see if a real-time system provides a service on time. Generally, monitoring for real-time focuses on investigating the current status of a real-time system. To support a stable performance of a real-time system, it should have not only a function to see the current status of real-time process but also a function to predict executions of real-time processes, however. The legacy prediction model has some limitation to apply it to a real-time monitoring. First, it performs a static prediction after a real-time process finished. Second, it needs a statistical pre-analysis before a prediction. Third, transition probability and data about clustering is not based on the current data. We propose the execution prediction model based on learning algorithm to solve these problems and apply it to real-time monitoring. This model gets rid of unnecessary pre-processing and supports a precise prediction based on current data. In addition, this supports multi-level prediction by a trend analysis of past execution data. Most of all, We designed the model to support dynamic prediction which is performed within a real-time process' execution. The results from some experiments show that the judgment accuracy is greater than 80% if the size of a training set is set to over 10, and, in the case of the multi-level prediction, that the prediction difference of the multi-level prediction is minimized if the number of execution is bigger than the size of a training set. The execution prediction model proposed in this model has some limitation that the model used the most simplest learning algorithm and that it didn't consider the multi-regional space model managing CPU, memory and I/O data. The execution prediction model based on a learning algorithm proposed in this paper is used in some areas related to real-time monitoring and control.

A Study on Spatial Pattern of Impact Area of Intersection Using Digital Tachograph Data and Traffic Assignment Model (차량 운행기록정보와 통행배정 모형을 이용한 교차로 영향권의 공간적 패턴에 관한 연구)

  • PARK, Seungjun;HONG, Kiman;KIM, Taegyun;SEO, Hyeon;CHO, Joong Rae;HONG, Young Suk
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.155-168
    • /
    • 2018
  • In this study, we studied the directional pattern of entering the intersection from the intersection upstream link prior to predicting short future (such as 5 or 10 minutes) intersection direction traffic volume on the interrupted flow, and examined the possibility of traffic volume prediction using traffic assignment model. The analysis method of this study is to investigate the similarity of patterns by performing cluster analysis with the ratio of traffic volume by intersection direction divided by 2 hours using taxi DTG (Digital Tachograph) data (1 week). Also, for linking with the result of the traffic assignment model, this study compares the impact area of 5 minutes or 10 minutes from the center of the intersection with the analysis result of taxi DTG data. To do this, we have developed an algorithm to set the impact area of intersection, using the taxi DTG data and traffic assignment model. As a result of the analysis, the intersection entry pattern of the taxi is grouped into 12, and the Cubic Clustering Criterion indicating the confidence level of clustering is 6.92. As a result of correlation analysis with the impact area of the traffic assignment model, the correlation coefficient for the impact area of 5 minutes was analyzed as 0.86, and significant results were obtained. However, it was analyzed that the correlation coefficient is slightly lowered to 0.69 in the impact area of 10 minutes from the center of the intersection, but this was due to insufficient accuracy of O/D (Origin/Destination) travel and network data. In future, if accuracy of traffic network and accuracy of O/D traffic by time are improved, it is expected that it will be able to utilize traffic volume data calculated from traffic assignment model when controlling traffic signals at intersections.

Analyzing Self-Introduction Letter of Freshmen at Korea National College of Agricultural and Fisheries by Using Semantic Network Analysis : Based on TF-IDF Analysis (언어네트워크분석을 활용한 한국농수산대학 신입생 자기소개서 분석 - TF-IDF 분석을 기초로 -)

  • Joo, J.S.;Lee, S.Y.;Kim, J.S.;Kim, S.H.;Park, N.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.1
    • /
    • pp.89-104
    • /
    • 2021
  • Based on the TF-IDF weighted value that evaluates the importance of words that play a key role, the semantic network analysis(SNA) was conducted on the self-introduction letter of freshman at Korea National College of Agriculture and Fisheries(KNCAF) in 2020. The top three words calculated by TF-IDF weights were agriculture, mathematics, study (Q. 1), clubs, plants, friends (Q. 2), friends, clubs, opinions, (Q. 3), mushrooms, insects, and fathers (Q. 4). In the relationship between words, the words with high betweenness centrality are reason, high school, attending (Q. 1), garbage, high school, school (Q. 2), importance, misunderstanding, completion (Q.3), processing, feed, and farmhouse (Q. 4). The words with high degree centrality are high school, inquiry, grades (Q. 1), garbage, cleanup, class time (Q. 2), opinion, meetings, volunteer activities (Q.3), processing, space, and practice (Q. 4). The combination of words with high frequency of simultaneous appearances, that is, high correlation, appeared as 'certification - acquisition', 'problem - solution', 'science - life', and 'misunderstanding - concession'. In cluster analysis, the number of clusters obtained by the height of cluster dendrogram was 2(Q.1), 4(Q.2, 4) and 5(Q. 3). At this time, the cohesion in Cluster was high and the heterogeneity between Clusters was clearly shown.

Synthesis and Structural Study of Extraframework ZrI6Tl119+ Cationic Cluster in Zeolite A (제올라이트 A 동공 내 비골격 ZrI6Tl119+ 양이온 클러스터의 합성과 구조 연구)

  • Hyeon Seung, Lim;Jong Sam, Park;Cheol Woong, Kim;Woo Taik, Lim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.447-455
    • /
    • 2022
  • Fully dehydrated Tl12-LTA (|Tl12|[Si12Al12O48]-LTA,Tl12-A) was treated with 6.0×103 Pa of ZrI4 (g) at 623 K for 72 hr under anhydrous conditions. The crystal structure of product, |Zr0.25I1.5Tl12|[Si12Al12O48]-LTA, was determined by single-crystal crystallography using synchrotron X-radiation in the cubic space group Pm3m (a = 12.337(2) Å). It was refined using all data to the final error index (for the 712 unique reflections for which Fo> 4σ(Fo) R1/wR2= 0.055/0.189. In this structure, octahedral ZrI62- ions center about 25% of the large cavities (Zr-I = 2.91(4) Å). Each coordinates to eight Tl+ ions and they are further bridged by Tl+ ions in the planes of 8-rings to form a cubic three-dimensional ZrI6Tl119+ cationic cluster. About 1.5 Tl+ ions per unit cell moved to deeper side of sodalite cavity after reaction with ZrI4(g). The remaining Tl+ ions occupy well-established cation positions near 6- and 8-rings.

Benchmark Test Study of Localized Digital Streamer System (국산화 디지털 스트리머 시스템의 벤치마크 테스트 연구)

  • Jungkyun Shin;Jiho Ha;Gabseok Seo;Young-Jun Kim;Nyeonkeon Kang;Jounggyu Choi;Dongwoo Cho;Hanhui Lee;Seong-Pil Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.52-61
    • /
    • 2023
  • The use of ultra-high-resolution (UHR) seismic surveys to preceisly characterize coastal and shallow structures have increased recently. UHR surveys derive a spatial resolution of 3.125 m using a high-frequency source (80 Hz to 1 kHz). A digital streamer system is an essential module for acquiring high-quality UHR seismic data. Localization studies have focused on reducing purchase costs and decreasing maintenance periods. Basic performance verification and application tests of the developed streamer have been successfully carried out; however, a comparative analysis with the existing benchmark model was not conducted. In this study, we characterized data obtained by using a developed streamer and a benchmark model simultaneously. Tamhae 2 and auxiliary equipment of the Korea Institute of Geoscience and Mineral Resources were used to acquire 2D seismic data, which were analyzed from different perspectives. The data obtained using the developed streamer differed in sensitivity from that obtained using benchmark model by frequency band.However, both type of data had a very high level of similarity in the range corresponding to the central frequency band of the seismic source. However, in the low frequency band below 60 Hz, data obtained using the developed streamer showed a lower signal-to-noise ratio than that obtained using the benchmark model.This lower ratio can hinder the quality in data acquisition using low-frequency sound sources such as cluster air guns. Three causes for this difference were, and streamers developed in future will attempt to reflect on these improvements.