• Title/Summary/Keyword: 공간자기회귀모델

Search Result 14, Processing Time 0.018 seconds

Detection and Forecast of Climate Change Signal over the Korean Peninsula (한반도 기후변화시그널 탐지 및 예측)

  • Sohn, Keon-Tae;Lee, Eun-Hye;Lee, Jeong-Hyeong
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.4
    • /
    • pp.705-716
    • /
    • 2008
  • The objectives of this study are the detection and forecast of climate change signal in the annual mean of surface temperature data, which are generated by MRI/JMA CGCM over the Korean Peninsula. MRI/JMA CGCM outputs consist of control run data(experiment with no change of $CO_2$ concentration) and scenario run data($CO_2$ 1%/year increase experiment to quadrupling) during 142 years for surface temperature and precipitation. And ECMWF reanalysis data during 43 years are used as observations. All data have the same spatial structure which consists of 42 grid points. Two statistical models, the Bayesian fingerprint method and the regression model with autoregressive error(AUTOREG model), are separately applied to detect the climate change signal. The forecasts up to 2100 are generated by the estimated AUTOREG model only for detected grid points.

Exploring NDVI Gradient Varying Across Landform and Solar Intensity using GWR: a Case Study of Mt. Geumgang in North Korea (GWR을 활용한 NDVI와 지형·태양광도의 상관성 평가 : 금강산 지역을 사례로)

  • Kim, Jun Woo;Um, Jung Sup
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.73-81
    • /
    • 2013
  • Ordinary least squares (OLS) regression is the primary statistical method in previous studies for vegetation distribution patterns in relation to landform. However, this global regression lacks the ability to uncover some local-specific relationships and spatial autocorrelation in model residuals. This study employed geographically weighted regression (GWR) to examine the spatially varying relationships between NDVI (Normalized Difference Vegetation Index) patterns and changing trends of landform (elevation, slope) and solar intensity (insolation and duration of sunshine) in Mt Geum-gang of North-Korea. Results denoted that GWR was more powerful than OLS in interpreting relationships between NDVI patterns and landform/solar intensity, since GWR was characterized by higher adjusted R2, and reduced spatial autocorrelations in model residuals. Unlike OLS regression, GWR allowed the coefficients of explanatory variables to differ by locality by giving relatively more weight to NDVI patterns which are affected by local landform and solar factors. The strength of the regression relationships in the GWR increased significantly, by showing regression coefficient of higher than 70% (0.744) in the southern ridge of the experimental area. It is anticipated that this research output will serve to increase the scientific and objective vegetation monitoring in relation to landform and solar intensity by overcoming serious constraints suffered from the past non-GWR-based approach.

A Study on the Statistical GIS for Regional Analysis (지역분석을 위한 웹 기반 통계GIS 연구)

  • 박기호;이양원
    • Spatial Information Research
    • /
    • v.9 no.2
    • /
    • pp.239-261
    • /
    • 2001
  • A large suite of official statistical data sets has been compiled for geographical units under the national directives, and it is the quantitative regional analysis procedures that could add values to them. This paper reports our attempts at prototyping a statistical GIS which is capable of serving over the Web a variety of regional analysis routines as well as value-added statistics and maps. A pilot database of some major statistical data was ingested for the city of Seoul. The baseline subset of regional analysis methods of practical usage was selected and accommodated into the business logic of the target system, which ranges from descriptive statistics, regional structure/inequality measures, spatial ANOVA, spatial (auto) correlation to regression and residual analysis. The leading-edge information technologies including the application server were adopted in the system design and implementation so that the database, analysis modules and analytic mapping components may cooperate seamlessly behind the Web front-end. The prototyped system supports tables, maps, and files of downloadable format for input and output of the analyses. One of the most salient features of out proposed system is that both the database and analysis modules are extensible via the bi-directional interface for end users; The system provides users with operators and parsers for algebraic formulae such that the stored statistical variables may be transformed and combined into the newly-derived set of variables. This functionality eventually leads to on-the-fly fabrication of user-defined regional analysis algorithms. The stored dataset may also be temporarily augmented by user-uploaded dataset; The extension of this form, in essence, results in a virtual database which awaits for users commands as usual. An initial evaluation of the proposed system confirms that the issues involving the usage and dissemination of information can be addressed with success.

  • PDF

A Study on the Effect of Macroeconomic Variables on Apartment Rental Housing Prices by Region and the Establishment of Prediction Model (거시경제변수가 지역 별 아파트 전세가격에 미치는 영향 및 예측모델 구축에 관한 연구)

  • Kim, Eun-Mi
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.211-231
    • /
    • 2022
  • This study attempted to identify the effects of macroeconomic variables such as the All Industry Production Index, Consumer Price Index, CD Interest Rate, and KOSPI on apartment lease prices divided into nationwide, Seoul, metropolitan, and region, and to present a methodological prediction model of apartment lease prices by region using Long Short Term Memory (LSTM). According to VAR analysis results, the nationwide apartment lease price index and consumer price index in Lag1 and 2 had a significant effect on the nationwide apartment lease price, and likewise, the Seoul apartment lease price index, the consumer price index, and the CD interest rate in Lag1 and 2 affect the apartment lease price in Seoul. In addition, it was confirmed that the wide-area apartment jeonse price index and the consumer price index had a significant effect on Lag1, and the local apartment jeonse price index and the consumer price index had a significant effect on Lag1. As a result of the establishment of the LSTM prediction model, the predictive power was the highest with RMSE 0.008, MAE 0.006, and R-Suared values of 0.999 for the local apartment lease price prediction model. In the future, it is expected that more meaningful results can be obtained by applying an advanced model based on deep learning, including major policy variables