DOI QR코드

DOI QR Code

Exploring NDVI Gradient Varying Across Landform and Solar Intensity using GWR: a Case Study of Mt. Geumgang in North Korea

GWR을 활용한 NDVI와 지형·태양광도의 상관성 평가 : 금강산 지역을 사례로

  • Kim, Jun Woo (Department of Geography, Kyungpook National University) ;
  • Um, Jung Sup (Department of Geography, Kyungpook National University)
  • Received : 2013.10.11
  • Accepted : 2013.12.09
  • Published : 2013.12.31

Abstract

Ordinary least squares (OLS) regression is the primary statistical method in previous studies for vegetation distribution patterns in relation to landform. However, this global regression lacks the ability to uncover some local-specific relationships and spatial autocorrelation in model residuals. This study employed geographically weighted regression (GWR) to examine the spatially varying relationships between NDVI (Normalized Difference Vegetation Index) patterns and changing trends of landform (elevation, slope) and solar intensity (insolation and duration of sunshine) in Mt Geum-gang of North-Korea. Results denoted that GWR was more powerful than OLS in interpreting relationships between NDVI patterns and landform/solar intensity, since GWR was characterized by higher adjusted R2, and reduced spatial autocorrelations in model residuals. Unlike OLS regression, GWR allowed the coefficients of explanatory variables to differ by locality by giving relatively more weight to NDVI patterns which are affected by local landform and solar factors. The strength of the regression relationships in the GWR increased significantly, by showing regression coefficient of higher than 70% (0.744) in the southern ridge of the experimental area. It is anticipated that this research output will serve to increase the scientific and objective vegetation monitoring in relation to landform and solar intensity by overcoming serious constraints suffered from the past non-GWR-based approach.

식생의 분포와 지형 태양광도의 상관성을 규명하는 것은 공간적 이질성을 내포하는 공간데이터의 분석이지만 기존의 많은 선형모델들은 이들 데이터가 갖는 공간적 특성을 고려하지 못하고 있다. 이러한 문제점을 극복하기 위해 금강산을 대상으로 식생분포를 정량적으로 나타내는 NDVI(Normalized Difference Vegetation Index)와 일사량, 일조시간, 고도, 경사에 대하여 지리가중회귀분석(GWR : Geographically Weighted Regression)을 실시하였다. GWR 은 전역적 모형인 OLS(Ordinary Least Squares)에 비해 모형의 설명력과 적합성이 확연히 높아졌으며, 잔차의 공간적 자기상관성 또한 해소된 것으로 나타났다. OLS 분석결과는 NDVI에 미치는 지형 태양광도의 영향력을 연구지역에서 단일하게 추정하였으나, GWR은 각 인자가 NDVI에 미치는 영향력을 국지적으로 보다 세밀하게 추정하여 공간단위에 따른 각 인자의 영향력을 보다 확연히 나타내었다. 국지적 차원에서 추정된 NDVI와 지형 태양광도의 상관성은 식생분포를 조사하는 과정에서 보다 객관적이고 세밀한 분석을 위한 중요한 참고자료로 사용될 수 있을 것이다.

Keywords

References

  1. Anselin, L. and Bera, A. K., 1998, Spatial dependence in linear regression models with an introduction to spatial econometrics, in Aman Ullah and David Giles(eds.), Handbook of applied economic statistics, New York, pp.237-289.
  2. Anselin, L., Hudak, S. and Dodson, R., 1993, Spatial data analysis and GIS: interfacing GIS and econometric software, National center for geographic information and analysis, Santa Barbara, CA, pp.1-106.
  3. Austin, M., 2007, Species distribution models and ecological theory: a critical assessment and some possible new approaches, Ecological modelling, Vol.200, pp.1-19. https://doi.org/10.1016/j.ecolmodel.2006.07.005
  4. Charlton, M. and Fotheringham, A. S., 2008, Geographically weighted regression: a tutorial on using GWR in ArcGIS9.3. http://ncg.nuim.ie/ncg/GWR/GWR_Tutorial.pdf. pp.1-27.
  5. Charlton, M. and Fotheringham, A. S., 2009, Geographically weighted regression: white paper. http://ncg.nhim.ie/ncg/GWR/GWR_WhitePaper.pdf. pp.1-17.
  6. Choi, D. J. and Suh, Y. C., 2012, Geographically weighted regression on the environmental-ecological factors of human longevity, The Korean society for geo-spatial information system, Vol.20, No.3, pp.57-63. https://doi.org/10.7319/kogsis.2012.20.3.057
  7. Choi, J. H. and Um, J. S., 2012, Application of satellite image to evaluate UN-REDD registration potential of North Korea : a case study of Mt. Geumgang, The Korean society for geo-spatial information system, Vol.20, No.4, p.79.
  8. Choi, M. H. and Yun, J. I., 2009, On recent variations in solar radiation and daily maximum temperature in summer, Korean agricultural and forest meteorology, Vol.11, No.4, p.189.
  9. Chung, K. S., Kim, S. W. and Lee, S. Y., 2011, Busan housing market dynamics modeling, Korean journal of policy analysis and evaluation, Vol.21, No.4, pp.117-144.
  10. Gao, J., Li, S., Zhao, Z. and Cai, Y., 2012, Investigating spatial variation in the relationships between NDVI and environmental factors at multi-scales: a case study of Guizhou karst plateau China, International journal of remote sensing, Vol.33, No.7, pp.2112-2129. https://doi.org/10.1080/01431161.2011.605811
  11. Griffith, D. A. and Layne, L. J., 1999, A casebook for spatial statistical data analysis: a compilation of analyses of different thematic data set, Oxford university press, p.524.
  12. Hong, S. Y., Hui, J. N., Ahn, J. B., Lee, J. M., Min, B. K., Lee, C. K., Kim, Y. H., Lee, K. D., Kim, S. H., Kim, G. Y. and Shim, K. M., 2012, Estimating rice yield using MODIS NDVI and meteorological data in Korea, The korean society of remote sensing, Vol.28, No.5, pp.509-520. https://doi.org/10.7780/kjrs.2012.28.5.4
  13. ICIMOD(International Centre for Integrated Mountain Development), 2011, A monitoring report on forest carbon stocks changes in REDD project sites (Ludikhola, Kayarkhola and Charnawati), pp.1-35.
  14. Jee, J. B., Zo, S. I., Lee, K. T. and Choi, Y. J., 2011, Distribution of photovoltaic energy including topography effect, Korean earth science society, Vol.32, No.2, pp.190-199. https://doi.org/10.5467/JKESS.2011.32.2.190
  15. Jo, D. G., 2009a, A spatial analysis of sociodemographic correlates of health related quality of life, Korean journal of population studies, Vol.32, No.3, pp.1-20.
  16. Jo, D. G, 2009b, GIS and geographically weighted regression in the survey research of small areas, Survey research, Vol.10, No.3, pp.1-19.
  17. Kim, B. W., Kang, I. J. and Han, K. B., 2010, Insolation modeling using climate and geo-spatial elements, The Korean society for geo-spatial information system, Vol.18, No.4, pp.79-86.
  18. Kim, C. M., 1991, Studies on analysis of forest distribution and characteristics in Gumo-san provincial park using landsat thematic mapper data and digital terrain model, Doctoral dissertation, Seoul national university, p.68.
  19. Kim, G. G., 2003, Exploration of spatial autocorrelation and application of spatial regression, Korean journal of policy analysis and evaluation, Vol.13, No.1, pp.273-306.
  20. Kim, T. M., Song, C. C., Lee, W. K., Son, Y. H., Bae, S. W. and Kim, C. S., 2007, Up-scaling vegetation carbon storage distribution map of Pinus densiflora stands from plot to landscape level using GIS/RS, Korea spatial information society, 2007 Korea spatial information society academic conference, pp.221-225.
  21. Kim, Y. P., 2008, A study on distribution characteristic of NDVI according to the topographic position, Korea institute of forest recreation, Vol.12, No.4, pp.47-54.
  22. Kimmins, J. P., 1987, Forest ecology, Macumilan publishing company, p.530.
  23. Lee, C. B., Lee, M. Y. and Choi, J. C., 1991, A solar irradiance and air temperature simulation model for the slope of Mt. Halla in Chejudo, Environmental research, Vol.8, p.118.
  24. Lee, J. T., Yoon, S. H. and Park, M. E., 1995, Relationships between seasonal duration of sunshine and air temperature in Korea, Korean journal of environmental agriculture, Vol.14, No.2, p.155.
  25. Lee, S. H., Kim, H. J. and Yun, C. W., 2012, Correlation analysis between forest community structure and environment factor in Mt. Guryong, Gyeongsangbuk-do province, Korean forest society, Vol.101, No.3, pp.526-537.
  26. Park, I. H. and Seo, Y. G., 2001, Forest structure in relation to slope aspect and altitude in valley forests at Kyeryongsan national park, Korean society of environment & ecology, Vol.14, No.4, pp.296-302.
  27. Park, M. H., Lee, J. S. and Park J. I., 2008, A relationship analysis among land surface temperature and NDVI in Hampyeong bay using landsat TM/ETM+ satellite images, Korean association of cadastre information, Vol.10, No.2, pp.107-115.
  28. Park, Y. S., Lee, M. J., Song, H. G. and Lee, G. S., 2001, An analysis of vegetation structure and vegetation-environment relationships with DCCA in the valley part of Kyeryongsan national park, Korean forest society, Vol.90, No.3, pp.249-256.
  29. Propastin, P., Kappas, M. and Erasmi, S., 2008, Application of geographically weighted regression to investigate the impact of scale on prediction uncertainty by modelling relationship between vegetation and climate, International journal of spatial data infrastructures research, Vol.3, pp.73-94.
  30. Schulz, J. J., Cayuela, L., Rey-Benayas, J. M. and Schrder, B., 2011, Factors influencing vegetation cover change in Mediterranean Central Chile (1975-2008), Applied vegetation science, Vol.14, No.4, p.575.
  31. Shin, J. H., 2012, Simulation map of potential natural vegetation and actual vegetation distribution using high-resolution images and geographic information system : focused on the Bukhansan national park, Doctoral dissertation, Kongju national university, p.167.
  32. Shin, K. H., 2006, Analysis of spatial relationship between environmental factors and vegetation distribution using DEM : in Jiri-mountain national park, The Korean geomorphological association, Vol.13, No.1, pp.85-95.
  33. Shin, S. H., Ha, K. J., Kim, J. H., Oh, H. M. and Jo, M. H., 2004, Estimation of local surface temperature from EBM with the use of GRID/GIS and remote sensed data, The Korean society of remote sensing, Vol.20, No.2, p.103-116. https://doi.org/10.7780/kjrs.2004.20.2.103
  34. Song, H. K., So, S. K., Kim, M. Y., Park, J. M., Lee, S. H. and Park, G. S., 2007, Vegetation-environment relationships in forest community of Ulleung Island, Korean society of environment & ecology, Vol.21, No.1, p.82-92.
  35. Sung, C. J. and Jung, J. C., 2003, A study on change of NDVI according to the terrain element, The Korean association of geographic information studies, Vol.6, No.2, pp.92-100.
  36. Um, J. S., 2009, Evaluating explanatory power of solar intensity as determining factor of housing density in intermontane basin, The Korean association of regional geography, Vol.15, No.6, pp.689-706.
  37. World Bank Group, 2011, Estimating the opportunity costs of REDD+ : a training manual, version 1.3, Washington D.C, p.262.
  38. Yoon, J. H., 2003, Characteristics and change prediction of spatial distribution of pinus densiflora stands in Korea : emphasis on impacts of topography, climate, and soil factors, Doctoral dissertation, Korea university, p.144.
  39. Yuan, F., Roy, S. S., 2007, Analysis of the relationship between NDVI And climate variables in Minnesota using geographically weighted regression and spatial interpolation, proceedings of the annual conference, American society for photogrammetry and remote sensing, Vol.2, pp.784-789.
  40. Yun, J. I., 2009, A simple method using a topography correction coefficient for estimating daily distribution of solar irradiance in complex terrain, Korean journal of agricultural and forest meteorology, Vol.11, No.1, pp.13-18. https://doi.org/10.5532/KJAFM.2009.11.1.013

Cited by

  1. Informed consent utilizing satellite imagery in forestry carbon trading with North Korea vol.17, pp.4, 2017, https://doi.org/10.1007/s10784-016-9333-x
  2. 양동마을 택지선정의 물리적 특성에 관한 연구 vol.25, pp.6, 2013, https://doi.org/10.6107/jkha.2014.25.6.049