• Title/Summary/Keyword: 공간마이닝

Search Result 233, Processing Time 0.026 seconds

A Study on Association-Rules for Recurrent Items Mining of Multimedia Data (멀티미디어 데이타의 재발생 항목 마이닝을 위한 연관규칙 연구)

  • 김진옥;황대준
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.3
    • /
    • pp.281-289
    • /
    • 2002
  • Few studies have been systematically pursued on a multimedia data mining in despite of the over-whelming amounts of multimedia data by the development of computer capacity, storage technology and Internet. Based on the preliminary image processing and content-based image retrieval technology, this paper presents the methods for discovering association rules from recurrent items with spatial relationships in huge data repositories. Furthermore, multimedia mining algorithm is proposed to find implicit association rules among objects of which content-based descriptors such as color, texture, shape and etc. are recurrent and of which descriptors have spatial relationships. The algorithm with recurrent items in images shows high efficiency to find set of frequent items as compared to the Apriori algorithm. The multimedia association-rules algorithm is specially effective when the collection of images is homogeneous and it can be applied to many multimedia-related application fields.

  • PDF

An Emerging Pattern Mining based Classification Method for Automated Prediction of Myocardial Ischemia ECG Signals (심근허혈 심전도 신호의 자동화된 예측을 위한 출현 패턴 마이닝 기반의 분류 방법)

  • Heon Gyu Lee;Ming Hao Park;Keun Ho Ryu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.19-22
    • /
    • 2008
  • 최근 서구화된 식생활 패턴과 흡연, 비만 등의 원인으로 인해 심근경색, 협심증과 같은 심근허혈(myocardial ischemia) 질환이 급증하고 있다. 이 논문에서는 심전도 신호로부터 허혈성 심장 질환 진단을 위해 출현 패턴 마이닝을 이용하여 심근경색 및 협심증의 진단 신호인 ischemia beat를 분류 하였다. 또한 기존의 출현 패턴 마이닝에 빠른 패턴 탐사와 저장 공간의 효율성을 고려하여 Apriori-T 빈발 패턴 탐사 알고리즘을 출현 패턴 생성이 가능하도록 확장하였다. PhysioNet의 ST-T 데이터베이스로부터 138개의 대조군(정상)과 ischemia beat 데이터에 제안된 분류 알고리즘을 실험한 결과 최소 75% 및 최대 95%의 예측 정확도를 보였다.

Analysis of the Research Trends by Environmental Spatial-Information Using Text-Mining Technology (텍스트 마이닝 기법을 활용한 환경공간정보 연구 동향 분석)

  • OH, Kwan-Young;LEE, Moung-Jin;PARK, Bo-Young;LEE, Jung-Ho;YOON, Jung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.113-126
    • /
    • 2017
  • This study aimed to quantitatively analyze the trends in environmental research that utilize environmental geospatial information through text mining, one of the big data analysis technologies. The analysis was conducted on a total of 869 papers published in the Republic of Korea, which were collected from the National Digital Science Library (NDSL). On the basis of the classification scheme, the keywords extracted from the papers were recategorized into 10 environmental fields including "general environment", "climate", "air quality", and 20 environmental geospatial information fields including "satellite image", "numerical map", and "disaster". With the recategorized keywords, their frequency levels and time series changes in the collected papers were analyzed, as well as the association rules between keywords. First, the results of frequency analysis showed that "general environment"(40.85%) and "satellite image"(24.87%) had the highest frequency levels among environmental fields and environmental geospatial information fields, respectively. Second, the results of the time series analysis on environmental fields showed that the share of "climate" between 1996 and 2000 was high, but since 2001, that of "general environment" has increased. In terms of environmental geospatial information fields, the demand for "satellite image" was highest throughout the period analyzed, and its utilization share has also gradually increased. Third, a total of 80 correlation rules were generated for environmental fields and environmental geospatial information fields. Among environmental fields, "general environment" generated the highest number of correlation rules (17) with environmental geospatial information fields such as "satellite image" and "digital map".

A Clustering using Incremental Projection for High Dimensional Data (고차원 데이터에서 점진적 프로젝션을 이용한 클러스터링)

  • 이혜명;박영배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.189-191
    • /
    • 2000
  • 데이터 마이닝의 방법론 중 클러스터링은 데이터베이스 객체들의 에트리뷰트 값에 근거하여 유사한 그룹으로 식별하는 기술적인 작업이다. 그러나 대부분 알고리즘들은 데이터의 차원이 증가할수록 형성된 전체 데이터 공간은 매우 방대하므로 의미있는 클러스터의 탐색이 더욱 어렵다. 따라서 효과적인 클러스터링을 위해서는 클러스터가 포함될 데이터 공간의 예측이 필요하다. 본 논문에서는 고차원 데이터에서 각 차원에 대한 점진적 프로젝션을 이용한 클러스터링 방법을 제안한다. 제안한 방법에서는 클러스터가 포함될 가능성이 있는 데이터공간의 후보영역을 결정하여, 이 영역에서 점들의 평균값을 중심으로 클러스터를 탐색한다.

  • PDF

An associative service mining based on dynamic weight (동적 가중치 기반의 연관 서비스 탐사 기법)

  • Hwang, Jeong Hee
    • Journal of Digital Contents Society
    • /
    • v.17 no.5
    • /
    • pp.359-366
    • /
    • 2016
  • In order to provide useful services for user in ubiquitous environment, a technique that can get the helpful information considering user activity and preference is needed and also user's interest actually changes as time passes. Therefore, the discovering method which reflects the concern degree of service information is needed. In this paper, we present the finding method of frequent pattern with dynamic weight on individual item based on service ontology we design. Our method can be applied to provide interested service information for user depending on context.

Analysis and Prediction of Power Consumption Pattern Using Spatiotemporal Data Mining Techniques in GIS-AMR System (GIS-AMR 시스템에서 시공간 데이터마이닝 기법을 이용한 전력 소비 패턴의 분석 및 예측)

  • Park, Jin-Hyoung;Lee, Heon-Gyu;Shin, Jin-Ho;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.307-316
    • /
    • 2009
  • In this paper, the spatiotemporal data mining methodology for detecting a cycle of power consumption pattern with the change of time and spatial was proposed, and applied to the power consumption data collected by GIS-AMR system with an aim to use its resulting knowledge in real world applications. First, partial clustering method was applied for cluster analysis concerned with the aim of customer's power consumption. Second, the patterns of customer's power consumption data which contain time and spatial attribute were detected by 3D cube mining method. Third, using the calendar pattern mining method for detection of cyclic patterns in the various time domains, the meanings and relationships of time attribute which is previously detected patterns were analyzed and predicted. For the evaluation of the proposed spatiotemporal data mining, we analyzed and predicted the power consumption patterns included the cycle of time and spatial feature from total 266,426 data of 3,256 customers with high power consumption from Jan. 2007 to Apr. 2007 supported by the GIS-AMR system in KEPRI. As a result of applying the proposed analysis methodology, cyclic patterns of each representative profiles of a group is identified on time and location.

A Study on the Tangibility and Intangibility Value Contents Influence Factor of Jongmyo Shrine Using Text Mining Analysis (텍스트 마이닝 분석을 활용한 종묘의 유·무형 콘텐츠 영향요인 연구)

  • Park, Eun Soo;Kim, Ji Eun
    • Korea Science and Art Forum
    • /
    • v.22
    • /
    • pp.169-183
    • /
    • 2015
  • As time is rapidly changing, the culture to represent an era is getting more subdivided and complex. Due to cultural diversity, the influence, cause, characteristics which could be understood in individual field centered by space in the past cannot be understood now only by the viewpoint of one field, and it has become difficult to predict and correspond to the change of the future. With the development of information and knowledge delivery system, various cultural contents to form a space are being created and lapsed, but there are a lot of parts which cannot be explained or understood by only one point of view. To inspect these situation, this study is aimed to draw the Tangibility and Intangibility Value causes that became the influence with Jongmyo Shrine, designated from UNESCO at February 1995, a traditional space with historical superiority, analyze the key factors that became the main factor to form the space, and consider the importance of the related factors. The unconstructured data technique which is applied as the method of analysis in this study can be said to be a new value judgement and viewpoint in interpreting the space. Therefore, this study is a new trial to provide a frame for multilaterally interpreting the various traditional space and culture of Korea from the past to the present.

Keyword Analysis of Two SCI Journals on Rock Engineering by using Text Mining (텍스트 마이닝을 이용한 암반공학분야 SCI논문의 주제어 분석)

  • Jung, Yong-Bok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.303-319
    • /
    • 2015
  • Text mining is one of the branches of data mining and is used to find any meaningful information from the large amount of text. In this study, we analyzed titles and keywords of two SCI journals on rock engineering by using text mining to find major research area, trend and associations of research fields. Visualization of the results was also included for the intuitive understanding of the results. Two journals showed similar research fields but different patterns in the associations among research fields. IJRMMS showed simple network, that is one big group based on the keyword 'rock' with a few small groups. On the other hand, RMRE showed a complex network among various medium groups. Trend analysis by clustering and linear regression of keyword - year frequency matrix provided that most of the keywords increased in number as time goes by except a few descending keywords.

Analysis of International Standardization Trends of Smart Mining Technology: Focusing on GMG Guidelines (스마트 마이닝 기술 국제 표준화 동향 분석: GMG 가이드라인을 중심으로)

  • Park, Sebeom;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.173-193
    • /
    • 2022
  • In this study, international standardization trend of smart mining technology was analyzed focusing on the guidelines developed by GMG (Global Mining Guidelines Group). GMG is a non-profit organization that unites the global mining community. It was established to promote mining safety, innovation and sustainability. Currently, GMG's working group consists of artificial intelligence, asset management, autonomous mining, cybersecurity, data access and usage/interoperability, the electric mine, mineral processing, underground mining, and sustainability. Guideline development projects related to smart mining technology are being conducted in artificial intelligence, autonomous mining, cybersecurity, data access and usage/interoperability, and underground mining. As of April 2022, eight types of smart mining-related guidelines have been published through pre-launch, launch, guideline definition, contents generation, technical editing/layout/final review, and voting process. It is judged that the GMG guidelines can be an important reference for the development of domestic smart mining technology standards.

Spatial Clustering Analysis based on Text Mining of Location-Based Social Media Data (위치기반 소셜 미디어 데이터의 텍스트 마이닝 기반 공간적 클러스터링 분석 연구)

  • Park, Woo Jin;Yu, Ki Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.89-96
    • /
    • 2015
  • Location-based social media data have high potential to be used in various area such as big data, location based services and so on. In this study, we applied a series of analysis methodology to figure out how the important keywords in location-based social media are spatially distributed by analyzing text information. For this purpose, we collected tweet data with geo-tag in Gangnam district and its environs in Seoul for a month of August 2013. From this tweet data, principle keywords are extracted. Among these, keywords of three categories such as food, entertainment and work and study are selected and classified by category. The spatial clustering is conducted to the tweet data which contains keywords in each category. Clusters of each category are compared with buildings and benchmark POIs in the same position. As a result of comparison, clusters of food category showed high consistency with commercial areas of large scale. Clusters of entertainment category corresponded with theaters and sports complex. Clusters of work and study showed high consistency with areas where private institutes and office buildings are concentrated.