• 제목/요약/키워드: 공간마이닝

검색결과 233건 처리시간 0.028초

공간 데이터 마이닝에서의 질의 처리 최적화 전략 (Query Optimization Infrastructure in Spatial Data Mining)

  • 김충석;이현창;김경창
    • 한국통신학회논문지
    • /
    • 제26권7A호
    • /
    • pp.1200-1211
    • /
    • 2001
  • 최근 각광을 받고 있는 데이터 마이닝 분야에서 데이터 마이닝 툴과 시스템의 등장으로 상호적이고 사용하기 쉬운 GUI 환경의 강력한 데이터 마이닝 질의 언어가 필요하게 되었다. 공간 데이터 마이닝은 공간 데이터에서 유용한 지식을 발견하기 위한 데이터 마이닝의 한 부문이며 공간 데이터는 점, 선, 사각형, 다각형 등으로 이루어져 있다. 공간 데이터 마이닝은 지리정보시스템(GIS)과 더불어 최근에 많은 관심과 연구가 활발히 진행되고 있다. 한편, 공간 데이터 마이닝을 위한 질의 언어와 그 언어에 기반한 공간 데이터 마이닝 질의 처리 및 최적화에 대한 연구가 중요하게 대두되고 있다. 공간 데이터에 대한 마이닝은 일반 관계형 데이터베이스에서의 질의 언어로는 표현이 불가능하다. 본 연구에서는 먼저 공간 데이터 마이닝 질의언어를 정의, 설계하고 질의 언어에 결과 표현 방식과 결과 데이터 집합의 저장을 명시하여 질의 표현의 효율을 높이는 방식을 제시하였다. 또한 공간 데이터 마이닝을 위한 질의 처리 및 최적화 과정을 질의에 기반한 공간 실체화 뷰의 생성과 유지, 인덱스 활용을 통한 질의 재사용, sampling 마이닝 질의 option 등의 방법론을 이용하여 제시하였다.

  • PDF

공간 데이터 마이닝 시스템의 설계 및 구현 (Design and Implementation of a Spatial Data Mining System)

  • 백지행;오현교;배덕호;송주원;김상욱;최명회;조현주
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.307-310
    • /
    • 2008
  • GIS 기술의 발달로 많은 양의 공간 데이터가 축적됨에 따라 공간 데이터 마이닝의 중요성이 커지고 있다. 본 논문에서는 새로운 공간 데이터 마이닝 시스템인 SD-Miner를 제안한다. SD-Miner는 크게 GUI 모듈과 데이터 마이닝 함수 모듈, 데이터 관리 모듈의 세부분으로 구성된다. GUI 모듈은 사용자의 입력과 출력을 담당한다. SD-Miner의 핵심 부분인 데이터 마이닝 함수 모듈은 공간 데이터 마이닝의 주요 기법인 공간 클러스터링, 공간 분류, 공간 특성화, 시공간 연관규칙 탐사 기능을 제공한다. 데이터 관리 모듈은 DBMS를 이용하여 데이터를 저장하고 관리한다. 실제 공간 데이터를 이용한 마이닝을 수행함으로써 개발된 SD-Miner의 실용성을 규명하고, 의미 있는 마이닝 결과들을 도출한다.

공간 데이터 마이닝 시스템의 설계 및 구현 (Design and Implementation of a Spatial Data Mining System)

  • 배덕호;백지행;오현교;송주원;김상욱;최명회;조현주
    • 한국공간정보시스템학회 논문지
    • /
    • 제11권2호
    • /
    • pp.119-132
    • /
    • 2009
  • GIS 기술의 발달로 많은 양의 공간 데이터가 축적됨에 따라 공간 데이터 마이닝의 중요성이 커지고 있다. 본 논문에서는 새로운 공간 데이터 마이닝 시스템 SD-Miner를 제안한다. SD-Miner는 크게 입력과 출력을 담당하는 사용자 인터페이스, 공간 데이터 마이닝 기능을 처리하는 데이터 마이닝 모듈, DBMS를 이용하여 데이터를 저장하고 관리하는 데이터 저장 모듈의 세 부분으로 구성된다. 특히, 데이터 마이닝 함수 모듈에서는 공간 데이터 마이닝의 주요 기법인 공간 클러스터링, 공간 분류, 공간 특성화, 시공 간 연관규칙 탐사 기능을 제공한다. SD-Miner는 다음과 같은 특징을 가진다. SD-Miner는 사용자로 하여 금 공간 데이터 마이닝뿐만 아니라 비 공간 데이터에 대한 마이닝도 가능하게 하며, 각 마이닝 함수들을 라이브러리 형태로 제공하기 때문에 다른 시스템에서도 쉽게 사용 가능하다. 또한, 마이닝 매개 변수들을 테이블의 형태로 입력받기 때문에 시스템의 범용성이 높다. 개발된 SD-Miner의 실용성을 규명하기 위하여 실제 공간 데이터를 이용한 데이터 마이닝을 수행함으로써 여러 가지 의미있는 결과를 도출한다.

  • PDF

gCRM과 공간데이타마이닝 (gCRM and Spatial Data Mining)

  • 황정래;이기준
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2002년도 춘계학술대회 논문집
    • /
    • pp.38-44
    • /
    • 2002
  • 고객관계관리(CRM)나 마케팅과 같은 경영방식에서도 대용량의 공간 데이터베이스를 사용하는 지리정보시스템(GIS)과 같은 응용분야를 접목하고 있다. gCRM은 지리정보시스템과 고객관계관리를 결합한 것으로, 이러한 실정을 단적으로 보여 주고 있는 경영방식이다. gCRM은 대용량의 데이터베이스로부터 관심 있는 분야를 찾아내고 분석하게 된다. 그러기 위해서는 데이터마이닝이라는 기술이 필요하다. 하지만, gCRM은 일반적인 데이터베이스뿐만 아니라 공간 데이터베이스 역시 많이 사용되어진다. 이러한 공간데이터베이스로부터 관심 있는 부분이나 관계 그리고 특성 등을 찾아내기 위해서는 공간데이타마이닝이 요구된다. 본 논문에서는 gCRM 솔루션들의 기능을 중심으로 다양한 공간데이타마이닝 기법과 어떠한 관계가 있는지를 살펴봄으로써 gCRM과 공간데이타마이닝이 접목할 수 있는 부분에 대하여 정리하였다.

  • PDF

확장된 공간 연관 규칙 탐사기법 (Extended Method of Discovery of Spatial Association Rules)

  • 하단심;황부현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.83-86
    • /
    • 2000
  • 공간 데이터가 증가함에 따라 이를 효율적으로 저장하고 분석할 수 있는 기술이 필요하게 되었다. 공간 데이터 마이닝은 데이터베이스에서 유용한 지식을 추출하는 기술로, 기존의 데이터 마이닝 방법에 공간의 개념을 추가하여 확장함으로써 공간 패턴, 공간 객체들의 연관 관계 둥을 얻을 수 있다. 본 논문에서는 공간 데이터 마이닝의 기법 중의 하나인 공간 연관 규칙 탐사 기법을 제안한다. 제안하는 방법은 공간 관계를 포함한 공간 연관 규칙뿐만 아니라 공간 객체의 비공간 속성도 함께 고려함으로써 보다 확장되고 다양한 공간 연관 규칙을 탐사할 수 있다.

  • PDF

규칙베이스 기반의 일반화를 확장한 공간 데이터 마이닝 시스템 (A Spatial Data Mining System Extending Generalization based on Rulebase)

  • 최성민;김응모
    • 한국정보처리학회논문지
    • /
    • 제5권11호
    • /
    • pp.2786-2796
    • /
    • 1998
  • 대용량의 공간(spatial) 데이터베이스에서 사용자에게 관심있고 일반화된 지식을 추출하는 것은 지형 정보 시스템이나 지식 베이스 시스템의 개발에 중요한 기법중의 하나이다. 본 논문은 공간 데이터 마이닝에 널리 사용되는 일반화(generalization) 방법을 확장한 공간 데이터 마이닝 모듈에 공간 데이터를 추론할 수 있도록 구축된 규칙베이스(rulebase)를 통합한 공간데이터 마이닝 시스템을 제안한다. 이를 위한 전위기로서 공간 데이터 우선(spatial data dominated)과 비공간 데이터 우선(nonspatial data dominated) 마이닝을 병합한 방식과 다중 주제도(multiple thematic map)가 주어졌을 때의 공간 지식을 추출해 낼 수 있는 방식을 제안한다. 또한 후위기로서 공간 객체들간의 위상 관계(topological relationship)를 추론하기 위한 공간 규칙 베이스를 구축한다.

  • PDF

SIMS를 위한 공간 데이터 마이닝 질의 언어 (Spatial Data Mining Query Language for SIMS)

  • 박선;박상호;안찬민;이윤석;이주홍
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.70-72
    • /
    • 2004
  • SIMS는 공간 정보 관리 환경을 지원하기 위한 통합 관리 시스템으로서 다양한 공간 및 비공간 자료를 관리하고 여러 응용작업을 지원한다. 본 논문에서는 기존의 공간 데이터 마이닝 질의 언어가 처리하는 공간자료에 한정되지 않고, 자동 데이터 수집, 인공위성 측위 서비스, 원격탐사, GPS, 모바일 컴퓨팅 등의 다양한 자료라 시공간(Spatio-Temporal) 자료로부터 유용한 정보를 발견 할 수 있도록 SIMS를 기반으로 한 공간 데이터 마이닝 전용 시스템을 지원하는 공간 데이터 마이닝 질의 언어를 설계하였다.

  • PDF

시간 및 공간마이닝 기술을 이용한 GIS기반의 홍보우편 시스템 개발 (Development of GIS-based Advertizing Postal System Using Temporal and Spatial Mining Techniques)

  • 이헌규;나동길;최용훈;정훈;박종흥
    • Spatial Information Research
    • /
    • 제19권2호
    • /
    • pp.65-70
    • /
    • 2011
  • 홍보우편 서비스의 활성화와 효율적인 마케팅 캠페인을 위해서 GIS 및 시간/공간마이닝을 접목한 홍보우편 시스템을 개발하였다. 이 시스템은 정확한 고객선정을 위해서 순차/주기패턴을 이용한 구매 성향 정보와 RFM 분석 및 군집화 기법을 이용한 라이프스타일 군집 정보를 제공한다. 제안한 홍보우편 시스템을 통해 원청업체는 고객의 요구사항에 맞는 마케팅 캠페인이 가능하며, 온라인상에서 고객 선정, 홍보물 제작 및 배달까지의 "one-stop" 서비스가 가능하다.

공간 분할 지수를 이용한 이미지 데이터 연관 규칙 마이닝 (Association Rules Mining of Image Data using Spatial Factor)

  • 송임영;김경창;석상기
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.82-84
    • /
    • 2005
  • 본 논문에서는 기존의 멀티미디어 연관 규칙 알고리즘인 Max occur 알고리즘에서 추출한 빈발 항목 집합의 결과들에 대하여 빈발 항목 집합들끼리의 공간적인 연관 관계를 고려하기 위챈 공간 데이터 마이닝의 대표적인 공간 분할 방법인 그리드 셀 기반으로 곰간 분할 지수(spatial facotr)인 SF를 이용한 이미지 공간 연관 규칙 마이닝 방법을 제시한다. 또한 최소 공간 지지도를 적용하여 이미지 데이터에서 반복적으로 발생하는 항목과 항목간의 공간 관계를 통해 이미지 연관 규칙을 마이닝 하는데 보다 유효한 알고리즘을 제안한다.

  • PDF

대용량 공간 데이터로 부터 빈발 패턴 마이닝 (Mining Frequent Pattern from Large Spatial Data)

  • 이동규;이경민;정석호;이성호;류근호
    • 한국공간정보시스템학회 논문지
    • /
    • 제12권1호
    • /
    • pp.49-56
    • /
    • 2010
  • 공간 및 비 공간 데이터에서 알지 못했던 패턴을 탐사하는 빈발 패턴 탐사 기법은 마이닝 분야에서 가장 핵심적인 부분으로 많은 연구가 활발히 진행되고 있다. 기존의 자료구조들은 트리 구조 및 배열 구조로써 밀집 또는 희소 빈발 패턴에서 성능 저하를 보인다. 대용량의 공간 데이터는 밀집 및 희소 빈발 패턴을 둘 다 가지므로 단일 알고리즘으로 빠르게 탐사 하는 것은 중요하다. 본 논문에서는 단일 알고리즘을 사용하면서도 밀집 및 희소 빈발 패턴 모두에 대해 빠르게 빈발 패턴을 마이닝할 수 있는 압축된 패트리샤 빈발 패턴 트리라는 새로운 자료구조와 이를 사용한 빈발 패턴 마이닝 알고리즘을 제안한다. 실험 평가는 제안한 알고리즘이 대용량 희소 및 밀집 빈발 데이터에서 기존의 FP-Growth 알고리즘 보다 약 10배 정도 빠르게 빈발 패턴을 탐사하는 것을 보인다.