• Title/Summary/Keyword: 공간그리드

Search Result 217, Processing Time 0.018 seconds

Analysis of Landslide Characteristics of Inje Area Using SPOT5 Images and GIS Analysis (SPOT5영상과 GIS분석을 이용한 인제 지역의 산사태 특성 분석)

  • Oh, Che-Young;Kim, Kyung-Tag;Choi, Chul-Uong
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.445-454
    • /
    • 2009
  • Localized unprecedented torrential rain and heavy rainfall cause repeated damages and make it difficult to detect and predict the landslide caused by heavy rainfall. To analyze the landslide characteristics of Inje area this study used satellite images photographed after the occurrence of landslide caused by the typhoon Ewiniar occurred in July, 2006, and for GIS analysis purpose, interpreted the satellite images (SPOT5) visually to digitize into developing parts, water traveling parts and sediment parts. For analysis of spatial characteristics, landslide areas obtained from visual interpretation of digital map, 3rd & 4th forest vegetation maps and detailed soil map and grids were overlaid and analyzed. As a result, in regard to topographic features, landslide occurred at places, of which average slope is $26.34^{\circ}$, had south, south-east, south-west aspects and average altitude of 627m. From hydrological analysis, it was found out that water traveling area rapidly spread approaching water traveling area and sediment area. From forest type analysis, it was found out that landslide occurrence was high in pine woods, and in terms of girth class attribute, landslide occurred in small-sized woods, in which the crown occupancy of trees that have the diameter at breast height, 6~16cm, was greater than 50%. From the analysis of soil series, landslide areas constitute 37.85% of OdF and 37.35% of SmF, which had sandy loam soil and excellent drainage capacity. Through this study, landslides in Inje area were characterized and SPOT5 images of 2.5m resolution could be used. But there was a difficulty in determining water traveling parts adjacent to urban area.

Detection and Analysis of Three-dimensional Changes in Haeundae Marine and Beach Topography using RS and GIS Technology (RS.GIS 기법을 활용한 해운대 해저.해빈지형의 3차원 입체변화 탐지 및 분석)

  • Hong, Hyun-Jung;Choi, Chul-Uong;Han, Kyung-Soo;Jeon, Seong-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.243-253
    • /
    • 2006
  • As the ocean and beaches have suffered from the losses of sand, it is necessary to monitor the zones that are prone to erosion continuously with the object of the long-term management. However, each ward offices are busy trying to supply sand without analyzing the marine and beach topographic changes. Therefore a long term effect of erosion has not been shown. In this study, we proposed methods to collect accurate spatial data of the oceans and beaches through sounding and GPS surveys, and detected and analyzed topographic changes quantitatively and qualitatively, by using an integrated RS and GIS techniques. The result of this study revealed that the marine topography has been eroded for 25 years, because of the straight construction of the river and the vast development of urban features, in addition with change of the mean depth 0.40 m, the water surface area 11,028 $m^2$, and submarine volume 2,207,884 $m^3$. The beach topography has accreted for 5 years and the change of the mean elevation is 0.27m, the area 6,501 $m^2$, and volume 25,667 $m^3$, because of the installation of geogrids and the seasonal effect. We conducted monitoring works on the topographic survey of the ocean and beaches and analyzed the present condition of the coastal erosions. Therefore, it is estimated that necessary information on the supply of sand, the safe marine leisure and the management of bating place could be provided.

A Study on the Prediction of Disc Cutter Wear Using TBM Data and Machine Learning Algorithm (TBM 데이터와 머신러닝 기법을 이용한 디스크 커터마모 예측에 관한 연구)

  • Tae-Ho, Kang;Soon-Wook, Choi;Chulho, Lee;Soo-Ho, Chang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.502-517
    • /
    • 2022
  • As the use of TBM increases, research has recently increased to to analyze TBM data with machine learning techniques to predict the exchange cycle of disc cutters, and predict the advance rate of TBM. In this study, a regression prediction of disc cutte wear of slurry shield TBM site was made by combining machine learning based on the machine data and the geotechnical data obtained during the excavation. The data were divided into 7:3 for training and testing the prediction of disc cutter wear, and the hyper-parameters are optimized by cross-validated grid-search over a parameter grid. As a result, gradient boosting based on the ensemble model showed good performance with a determination coefficient of 0.852 and a root-mean-square-error of 3.111 and especially excellent results in fit times along with learning performance. Based on the results, it is judged that the suitability of the prediction model using data including mechanical data and geotechnical information is high. In addition, research is needed to increase the diversity of ground conditions and the amount of disc cutter data.

A Study on the Optimal Site Selection by Constraint Mapping and Park Optimization for Offshore Wind Farm in the Southwest Coastal Area (서남해 연안 해상풍력 발전단지 지리적 적합지 선정 및 최적배치에 관한 연구)

  • Jung-Ho, Kim;Geon-Hwa, Ryu;Hong-Chul, Son;Young-Gon, Kim;Chae-Joo, Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1145-1156
    • /
    • 2022
  • In order to effectively secure site suitability for the development of large-scale offshore wind farms, it is essential to minimize the environmental impact of development and analyze the conflicts of benefit between social, ecological, and economic core values. In addition, a preliminary review of site adequacy must be preceded in order not to collide with other used areas in the marine spatial plan. In addition, it is necessary to conduct local meteorological characteristics analysis including wind resources near Jeollanam-do area before project feasibility study. Therefore, wind resource analysis was performed using the observation data of the meteorological mast installed in Wangdeungnyeo near Anmado, Yeonggwang, and the optimal site was selected after excluding geographical constraints related to the location of the offshore wind farm. In addition, the annual energy production was calculated by deriving the optimal wind farm arrangement results suitable for the local wind resources characteristics based on WindSim SW, and it is intended to be used as basic research data for site discovery and selection of suitable sites for future offshore wind farm projects.

A Study on the Prediction of Uniaxial Compressive Strength Classification Using Slurry TBM Data and Random Forest (이수식 TBM 데이터와 랜덤포레스트를 이용한 일축압축강도 분류 예측에 관한 연구)

  • Tae-Ho Kang;Soon-Wook Choi;Chulho Lee;Soo-Ho Chang
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.547-560
    • /
    • 2023
  • Recently, research on predicting ground classification using machine learning techniques, TBM excavation data, and ground data is increasing. In this study, a multi-classification prediction study for uniaxial compressive strength (UCS) was conducted by applying random forest model based on a decision tree among machine learning techniques widely used in various fields to machine data and ground data acquired at three slurry shield TBM sites. For the classification prediction, the training and test data were divided into 7:3, and a grid search including 5-fold cross-validation was used to select the optimal parameter. As a result of classification learning for UCS using a random forest, the accuracy of the multi-classification prediction model was found to be high at both 0.983 and 0.982 in the training set and the test set, respectively. However, due to the imbalance in data distribution between classes, the recall was evaluated low in class 4. It is judged that additional research is needed to increase the amount of measured data of UCS acquired in various sites.

A Mobile Landmarks Guide : Outdoor Augmented Reality based on LOD and Contextual Device (모바일 랜드마크 가이드 : LOD와 문맥적 장치 기반의 실외 증강현실)

  • Zhao, Bi-Cheng;Rosli, Ahmad Nurzid;Jang, Chol-Hee;Lee, Kee-Sung;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.1-21
    • /
    • 2012
  • In recent years, mobile phone has experienced an extremely fast evolution. It is equipped with high-quality color displays, high resolution cameras, and real-time accelerated 3D graphics. In addition, some other features are includes GPS sensor and Digital Compass, etc. This evolution advent significantly helps the application developers to use the power of smart-phones, to create a rich environment that offers a wide range of services and exciting possibilities. To date mobile AR in outdoor research there are many popular location-based AR services, such Layar and Wikitude. These systems have big limitation the AR contents hardly overlaid on the real target. Another research is context-based AR services using image recognition and tracking. The AR contents are precisely overlaid on the real target. But the real-time performance is restricted by the retrieval time and hardly implement in large scale area. In our work, we exploit to combine advantages of location-based AR with context-based AR. The system can easily find out surrounding landmarks first and then do the recognition and tracking with them. The proposed system mainly consists of two major parts-landmark browsing module and annotation module. In landmark browsing module, user can view an augmented virtual information (information media), such as text, picture and video on their smart-phone viewfinder, when they pointing out their smart-phone to a certain building or landmark. For this, landmark recognition technique is applied in this work. SURF point-based features are used in the matching process due to their robustness. To ensure the image retrieval and matching processes is fast enough for real time tracking, we exploit the contextual device (GPS and digital compass) information. This is necessary to select the nearest and pointed orientation landmarks from the database. The queried image is only matched with this selected data. Therefore, the speed for matching will be significantly increased. Secondly is the annotation module. Instead of viewing only the augmented information media, user can create virtual annotation based on linked data. Having to know a full knowledge about the landmark, are not necessary required. They can simply look for the appropriate topic by searching it with a keyword in linked data. With this, it helps the system to find out target URI in order to generate correct AR contents. On the other hand, in order to recognize target landmarks, images of selected building or landmark are captured from different angle and distance. This procedure looks like a similar processing of building a connection between the real building and the virtual information existed in the Linked Open Data. In our experiments, search range in the database is reduced by clustering images into groups according to their coordinates. A Grid-base clustering method and user location information are used to restrict the retrieval range. Comparing the existed research using cluster and GPS information the retrieval time is around 70~80ms. Experiment results show our approach the retrieval time reduces to around 18~20ms in average. Therefore the totally processing time is reduced from 490~540ms to 438~480ms. The performance improvement will be more obvious when the database growing. It demonstrates the proposed system is efficient and robust in many cases.

Analysis of Urban Heat Island (UHI) Alleviating Effect of Urban Parks and Green Space in Seoul Using Deep Neural Network (DNN) Model (심층신경망 모형을 이용한 서울시 도시공원 및 녹지공간의 열섬저감효과 분석)

  • Kim, Byeong-chan;Kang, Jae-woo;Park, Chan;Kim, Hyun-jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.4
    • /
    • pp.19-28
    • /
    • 2020
  • The Urban Heat Island (UHI) Effect has intensified due to urbanization and heat management at the urban level is treated as an important issue. Green space improvement projects and environmental policies are being implemented as a way to alleviate Urban Heat Islands. Several studies have been conducted to analyze the correlation between urban green areas and heat with linear regression models. However, linear regression models have limitations explaining the correlation between heat and the multitude of variables as heat is a result of a combination of non-linear factors. This study evaluated the Heat Island alleviating effects in Seoul during the summer by using a deep neural network model methodology, which has strengths in areas where it is difficult to analyze data with existing statistical analysis methods due to variable factors and a large amount of data. Wide-area data was acquired using Landsat 8. Seoul was divided into a grid (30m × 30m) and the heat island reduction variables were enter in each grid space to create a data structure that is needed for the construction of a deep neural network using ArcGIS 10.7 and Python3.7 with Keras. This deep neural network was used to analyze the correlation between land surface temperature and the variables. We confirmed that the deep neural network model has high explanatory accuracy. It was found that the cooling effect by NDVI was the greatest, and cooling effects due to the park size and green space proximity were also shown. Previous studies showed that the cooling effects related to park size was 2℃-3℃, and the proximity effect was found to lower the temperature 0.3℃-2.3℃. There is a possibility of overestimation of the results of previous studies. The results of this study can provide objective information for the justification and more effective formation of new urban green areas to alleviate the Urban Heat Island phenomenon in the future.