최근 전자화된 문서 영상을 효율적으로 관리하고 검색하기 위한 문서구조분석 방법과 문서의 자동 분류에 관한 많은 연구가 발표되고 있다. 본 논문에서는 NMF(non-negative matrix factorization) 알고리즘을 사용하여 폰트를 자동으로 분류하는 방법을 제안한다. 제안된 방법은 폰트의 구분 특징들이 공간적으로 국부성을 가지는 부분으로 표현될 수 있다는 가정을 바탕으로, 전체의 폰트 이미지들로부터 각 폰트들의 구분 특징인 부분을 학습하고, 학습된 부분들을 특징으로 사용하여 폰트를 분류하는 방법이다. 학습된 폰트의 특징들은 계층적 군집화 알고리즘을 이용하여 템플릿을 생성하고, 테스트 패턴을 분류하기 위하여 템플릿 패턴과의 EMD(earth mover's distance)를 사용한다. 실험결과에서 폰트 이미지들의 공간적으로 국부적인 특징들이 조사되고, 그 특징들의 폰트 식별을 위한 적절성을 보였다. 제안된 방법이 기존의 문자인식. 문서 검색 시스템들의 전처리기로 사용되면. 그 시스템들의 성능을 향상시킬 것으로 기대된다.
고급 GIS 및 복잡한 공간 분석 기술이 발전함에 따라 다양한 의사 결정 지원 시스템에서 지리적 혹은 공간적 문제 해결을 위한 고급 지식을 지원하기 위해 더욱 강력한 기술이 필요하게 되었다. 또한, 법집행 기관 및 수사 기관 등을 중심으로 효율적인 수사 및 향후 범죄 예방을 위해 과학 수사, 법 과학에 관한 연구의 필요성이 증대되고 있다. 특히, 연쇄 범죄의 공간적 패턴을 분석함으로써 범죄자의 거점 위치를 예측하기 위한 지리적 프로파일링(Geographic Profiling)에 대한 연구가 활발하다. 그러나, 기존의 지리적 프로파일링 연구에서는 공간적 패턴 분석을 위해 단순히 통계적 방법만을 사용하고 있고, 연쇄 범죄에 대한 다양한 공간적, 시간적 분석 기술을 지원하지 않으므로 거점 예측시 낮은 정확도를 보인다. 그러므로, 본 논문에서는 범행 위치의 공간적 분포와 범죄 발생의 시간적 분포 특성에 따라 연쇄 범죄의 시공간 패턴을 유형화하고, 이를 기반으로 연쇄 범죄의 거점 위치를 보다 정확하게 예측하는 알고리즘으로 STA-BLP(Spatio-Temporal Analysis based Base Location Prediction)을 제안한다. STA-BLP는 하나의 거점으로부터 특정 방향을 선호하여 이동하며 발생되는 연쇄 범죄의 비등방성 패턴을 고려하고, 동일한 경로에 대한 반복 이동에 대한 범죄자의 학습 효과를 고려함으로써 예측 정확도를 개선시킨다. 또한, 다수의 군집화된 범행 위치들로부터 각 군집에 소속된 범행 위치들에 대한 지역적 거점 위치 예측과 모든 범행 위치에 대한 전역적 거점 위치 예측을 통해 거점이 다수 존재하는 연쇄 범죄의 경우에도 보다 정확한 예측을 수행한다. 마지막으로 다양한 실험을 통해 기존에 제시된 알고리즘과 STA-BLP의 예측 정확도를 비교하여 제안 알고리즘의 우수성을 입증하였다.
기존 파일 시스템의 검색은 검색결과를 제목과 요약문의 텍스트 형태로 제공함으로써 검색 결과가 많은 경우에 한눈에 결과를 살펴보는데 불편할 뿐 아니라 사용자가 직접 수많은 검색결과의 표제나 저자, 목차, 요약문을 확인하여 적합한 정보를 일일이 판별해야 하는 불편이 있다. 이에 정보들간의 유사도를 계산하여 군집화하고, 키워드와 검색결과들 간의 적합도와 검색결과들 간의 연관성 정보를 3D 공간 상에 디스플레이 하는 'DocuSynth' 시스템을 개발하였다. 이 연관성 정보들은 실세계 상의 3 차원 메타포인 '거리'로 변환되어 디스플레이 된다. 즉, 사용자로 하여금 정보간의 거리가 가까울수록 연관도가 높다고 직관적으로 인지할 수 있는 화면으로 설계하였다. 또한 3D 환경의 사용성을 높이기 위해 네비게이션 컨트롤러와 컨트롤 변수에 대한 사용성 평가를 실시하여 시스템 변수로 적용하였다. 본 연구결과는 향후 도래할 3D Web 에 대한 아이디어 제시와 구현 가이드라인으로 활용될 것으로 예상된다.
다중 에이전트 학습이란 다중 에이전트 환경에서 에이전트간의 조정을 위한 행동전략을 학습하는 것을 말한다. 본 논문에서는 에이전트간의 통신이 불가능한 다중 에이전트 환경에서 각 에이전트들이 서로 독립적으로 대표적인 강화학습법인 Q학습을 전개함으로써 서로 효과적으로 협조할 수 있는 행동전략을 학습하려고 한다. 하지만 단일 에이전트 경우에 비해 보다 큰 상태-행동 공간을 갖는 다중 에이전트환경에서는 강화학습을 통해 효과적으로 최적의 행동 전략에 도달하기 어렵다는 문제점이 있다. 이 문제에 대한 기존의 접근방법은 크게 모듈화 방법과 일반화 방법이 제안되었으나 모두 나름의 제한을 가지고 있다. 본 논문에서는 대표적인 다중 에이전트 학습 문제의 예로서 먹이와 사냥꾼 문제(Prey and Hunters Problem)를 소개하고 이 문제영역을 통해 이와 같은 강화학습의 문제점을 살펴보고, 해결책으로 신경망 SOM을 이용한 일반화 방법인 QSOM 학습법을 제안한다. 이 방법은 기존의 일반화 방법과는 달리 군집화 기능을 제공하는 신경망 SOM을 이용함으로써 명확한 다수의 훈련 예가 없어도 효과적으로 이전에 경험하지 못했던 상태-행동들에 대한 Q값을 예측하고 이용할 수 있다는 장점이 있다. 또한 본 논문에서는 실험을 통해 QSOM 학습법의 일반화 효과와 성능을 평가하였다.
본 논문에서는 에이전트간의 통신이 불가능한 다중 에이전트 환경에서 각 에이전트들이 독립적이면서 대표적인 강화학습법인 Q-학습을 전개함으로써 서로 효과적으로 협조할 수 있는 행동전략을 학습하려고 한다. 하지만 단일 에이전트 경우에 비해 보다 큰 상태-행동공간을 갖는 다중 에이전트환경에서는 강화학습을 통해 효과적으로 최적의 행동 전략에 도달하기 어렵다는 문제점이 있다. 이 문제에 대한 기존의 접근방법은 크게 모듈화 방법과 일반화 방법이 제안되었으나 모두 나름의 제한을 가지고 있다. 본 논문에서는 대표적인 다중 에이전트 학습 문제의 예로서 the Prey and Hunters Problem를 소개하고 이 문제영역을 통해 이와 같은 강화학습의 문제점을 살펴보고, 해결책으로 신경망 SOM 을 이용한 일반화 방법을 제안한다. 이 방법은 다층 퍼셉트론 신경망과 역전파 알고리즘을 이용한 기존의 일반화 방법과는 달리 군집화 기능을 제공하는 신경망 SOM 을 이용함으로써 명확한 다수의 훈련 예가 없어도 효과적으로 채 경험하지 못한 상태-행동들에 대한 Q 값을 예측하고 이용할 수 있다는 장점이 있다.
영상처리를 이용한 영상간의 유사도 비교 기법은 영상의 검색 및 영상의 자동 인식 등을 위한 연구로 최근 각광받고 있다. 최근 영상 처리 기법은 화소의 질적 향상 및 처리시간 최적화, 효율적인 특정 요소의 추출 등 다양한 방법으로 시도되고 있다. 특히, 영상의 유사도 비교는 유사 영상 검색과 같은 경우에 많이 쓰인다. 영상의 유사도를 비교하기 위한 기법으로는 영상 데이터의 특징에 따라 대상 영역을 여러 영역으로 나누는 영역분할 기법과 군집화, 퍼지, 유전자 알고리즘 등이 있다. 본 논문에서는 영상을 HSV 색공간으로 변환한 후 색상 값에 대하여 전역 정렬 기법을 사용하는 유사도 측정 방법을 제시한다. 전역 정렬 기법은 유전자 서열 비교 기법 중 하나로서 두 유전체의 유사도를 측정하는데 사용된다. 유사도 측정 효율을 높이기 위해 색상 값을 8단계로 양자화하여 영상의 서열을 생성하였다. 실험결과 제시한 방법을 영상 회전이나 대칭, 글자 삽입 등의 간단한 연산에 크게 영향을 받지 않는 것으로 드러났다.
본 연구에서는 영산강, 섬진강 유역에서 호소 간의 동물 플랑크톤의 군집구조 특성이 만수면적에 따라 분류된 소·중·대형의 저수지에서 종 수 및 개체수가 유의한 차이를 보이는 것을 확인하였다. 윤충류보다 지각류에서 민감도가 높은 것을 확인하였으며, 특히 두 분류군 모두 양의 상관 관계를 나타냈지만, 지각류에서 조사지점이 늘어날수록 개체수 증가가 확연한 것을 알 수 있었다. 또한 네트워크 분석 개념을 활용한 고유벡터 중심성 및 그룹화 분석을 사용하여 호소 간의 동물플랑크톤 군집구조를 비교했을 때, 만수면적에 따른 대·중·소형 호소 내에서도 지리적 특성과 미소환경 공간의 차이점을 구별할 수 있었다. 따라서 이러한 특성을 볼 때, 네트워크 분석은 담수 동물플랑크톤 군집구조 분석에 있어 만수면적 크기, 지리적 특성, 미소환경 특성을 반영할 수 있는 것으로 고려된다. 마지막으로, 네트워크 분석은 다양한 군집분석을 간소화하며 시각화를 통한 직관적 이해를 돕는 데 유용할 것이다.
포인트 속성의 위치 기반 소셜 네트워크 서비스(Location-Based Social Network Services, LBSNS) 데이터를 멀티스 케일의 타일맵상에 효과적으로 시각화하기 위해서는 격자 기반으로 군집화하여 표현해야 할 필요성이 있다. 이때 격자의 크기 및 개수를 결정해야 하는데, 이에 대한 기준은 정해진 것이 없으며 데이터의 종류와 분석 목적에 따라 달라지므로 연구자의 주관이 개입될 수밖에 없다. 이때 연구 결과에 영향을 끼치는 공간단위 임의성의 문제(Modifiable Areal Unit Problem, MAUP)가 발생한다. 본 연구에서는 LBSNS 중 지오태깅(geotagging)된 트위터(Twitter) 데이터를 대상으로 하여 이러한 MAUP의 영향을 스케일 효과(scale effect)의 측면에서 탐색해 보고자 하였다. 이를 위해 공간오차모델(spatial error model)을 이용하여 데이터의 공간적 자기상관성(spatial autocorrelation)의 정도를 조절하였으며, 이에 대해 격자의 크기를 달리함에 따른 공간적 자기상관성의 변화를 Moran's I를 통해 분석하였다. 실험 결과, 원 데이터에는 양의 공간적 자기상관성이 존재하는 것을 확인하였으며, 이러한 경우에는 공간오차모델의 공간자기회귀계수(spatial autoregressive coefficient)의 값이 증가할수록 공간적 자기상관성이 감소하는 것을 알 수 있었다. 이러한 특성을 이용하여 트위터 데이터의 공간적 자기상관성의 강도를 5단계로 조절하였으며, 각 단계에 대하여 격자의 크기를 9단계로 나누어 각각에서의 Moran's I를 계산하였다. 그 결과, 합역 수준이 높아질수록 공간적 자기상관성이 증가하다가 격자의 크기가 600m에서 1,000m 사이일 때 감소하는 것을 알 수 있었으며, 공간적 자기상관성이 강할수록 MAUP에서의 스케일 효과는 감소하는 경향이 있는 것을 확인하였다.
본 연구에서는 남한강에서 드론에 탑재된 초분광 센서를 활용하여 수변공간을 측정한 후, 초분광 분석을 통하여 재료를 구분하였다. 식생, 콘크리트, 흙 등의 재료를 대상으로 구분하였으며, 각각 재료의 고유한 분광반사 곡선의 특성을 비교 및 분석하였다. 드론으로 측정한 초분광 자료를 검증하기 위하여 지상분광측정기를 사용하여 현장조사를 실시하고 각 재료를 비교하였다. 분석 비교 결과 각 재료별로 고유한 유형의 파장대가 발생하는 것을 확인하였고 드론으로 수행한 원격 탐사 결과가 지상분광측정 결과와 유사하다는 결론을 내릴 수 있었다. 수변 공간의 분류를 위하여 K-means 군집화 기법과 SVM 분류 기법을 활용하여 측정 구역의 공간 분류를 수행할 수 있었다. 비교 결과, 지도학습인 SVM 분류 기법의 수변공간 분류가 비지도학습인 K-means 기법과 비교하여 상세한 구분이 수행되었음을 확인할 수 있었다. 이와 같이 분류 및 군집 분석 기법을 활용하여 각 수변공간 재료의 고유 분광 특성을 활용하여 측정되는 드론탑재 초분광 이미지의 각 데이터를 분류할 수 있게 되었다.
본 연구에서는 지반공간의 이해를 증진시키기 위하여 지반조사 자료를 통합하기에 용이한 3차원 GIS를 기반으로 하는 접근을 제안하고, 무안의 주거지 밀집지역에서 발생한 지반침하 지역에 대한 연구를 수행하였다. 본 연구대상 지역은 석회암을 기반암으로 하는 지역이므로 기반암종의 지질적인 구성이 침하발생에 중요한 인자가 된다. 석회암은 지하수로 인해 용식되어 공동을 생성하기 때문에 지하수의 통로가 되는 절리나 파쇄대의 파악이 중요하다. 따라서 유사한 기반암 구성별로 군집화하여 지반을 분류하였으며, 효과적인 지반정보 분석을 위하여 3차원 GIS를 통해 시추공 정보를 가시화하고 통합 분석하였다. 이에 따라 지반정보의 왜곡이 감소되어 지반공간에 대한 효율적인 분석이 가능하게 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.