• Title/Summary/Keyword: 공간군집화

Search Result 231, Processing Time 0.027 seconds

Multi-Dimensional Vector Approximation Tree with Dynamic Bit Allocation (동적 비트 할당을 통한 다차원 벡터 근사 트리)

  • 복경수;허정필;유재수
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.3
    • /
    • pp.81-90
    • /
    • 2004
  • Recently, It has been increased to use a multi-dimensional data in various applications with a rapid growth of the computing environment. In this paper, we propose the vector approximate tree for content-based retrieval of multi-dimensional data. The proposed index structure reduces the depth of tree by storing the many region information in a node because of representing region information using space partition based method and vector approximation method. Also it efficiently handles 'dimensionality curse' that causes a problem of multi-dimensional index structure by assigning the multi-dimensional data space to dynamic bit. And it provides the more correct regions by representing the child region information as the parent region information relatively. We show that our index structure outperforms the existing index structure by various experimental evaluations.

  • PDF

Font Classification using NMF and EMD (NMF와 EMD를 이용한 영문자 활자체 폰트분류)

  • Lee, Chang-Woo;Kang, Hyun;Jung, Kee-Chul;Kim, Hang-Joon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.688-690
    • /
    • 2004
  • 최근 전자화된 문서 영상을 효율적으로 관리하고 검색하기 위한 문서구조분석 방법과 문서의 자동 분류에 관한 많은 연구가 발표되고 있다. 본 논문에서는 NMF(non-negative matrix factorization) 알고리즘을 사용하여 폰트를 자동으로 분류하는 방법을 제안한다. 제안된 방법은 폰트의 구분 특징들이 공간적으로 국부성을 가지는 부분으로 표현될 수 있다는 가정을 바탕으로, 전체의 폰트 이미지들로부터 각 폰트들의 구분 특징인 부분을 학습하고, 학습된 부분들을 특징으로 사용하여 폰트를 분류하는 방법이다. 학습된 폰트의 특징들은 계층적 군집화 알고리즘을 이용하여 템플릿을 생성하고, 테스트 패턴을 분류하기 위하여 템플릿 패턴과의 EMD(earth mover's distance)를 사용한다. 실험결과에서 폰트 이미지들의 공간적으로 국부적인 특징들이 조사되고, 그 특징들의 폰트 식별을 위한 적절성을 보였다. 제안된 방법이 기존의 문자인식. 문서 검색 시스템들의 전처리기로 사용되면. 그 시스템들의 성능을 향상시킬 것으로 기대된다.

  • PDF

Base Location Prediction Algorithm of Serial Crimes based on the Spatio-Temporal Analysis (시공간 분석 기반 연쇄 범죄 거점 위치 예측 알고리즘)

  • Hong, Dong-Suk;Kim, Joung-Joon;Kang, Hong-Koo;Lee, Ki-Young;Seo, Jong-Soo;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.2
    • /
    • pp.63-79
    • /
    • 2008
  • With the recent development of advanced GIS and complex spatial analysis technologies, the more sophisticated technologies are being required to support the advanced knowledge for solving geographical or spatial problems in various decision support systems. In addition, necessity for research on scientific crime investigation and forensic science is increasing particularly at law enforcement agencies and investigation institutions for efficient investigation and the prevention of crimes. There are active researches on geographic profiling to predict the base location such as criminals' residence by analyzing the spatial patterns of serial crimes. However, as previous researches on geographic profiling use simply statistical methods for spatial pattern analysis and do not apply a variety of spatial and temporal analysis technologies on serial crimes, they have the low prediction accuracy. Therefore, this paper identifies the typology the spatio-temporal patterns of serial crimes according to spatial distribution of crime sites and temporal distribution on occurrence of crimes and proposes STA-BLP(Spatio-Temporal Analysis based Base Location Prediction) algorithm which predicts the base location of serial crimes more accurately based on the patterns. STA-BLP improves the prediction accuracy by considering of the anisotropic pattern of serial crimes committed by criminals who prefer specific directions on a crime trip and the learning effect of criminals through repeated movement along the same route. In addition, it can predict base location more accurately in the serial crimes from multiple bases with the local prediction for some crime sites included in a cluster and the global prediction for all crime sites. Through a variety of experiments, we proved the superiority of the STA-BLP by comparing it with previous algorithms in terms of prediction accuracy.

  • PDF

'DocuSynth': Displaying Relationship-based Information in 3D Browser (3D 연관성 브라우저 'DocuSynth' 개발)

  • Choi, Jeong-A;Kim, Eun-Hee;Hong, Seung-Pyo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.340-345
    • /
    • 2009
  • 기존 파일 시스템의 검색은 검색결과를 제목과 요약문의 텍스트 형태로 제공함으로써 검색 결과가 많은 경우에 한눈에 결과를 살펴보는데 불편할 뿐 아니라 사용자가 직접 수많은 검색결과의 표제나 저자, 목차, 요약문을 확인하여 적합한 정보를 일일이 판별해야 하는 불편이 있다. 이에 정보들간의 유사도를 계산하여 군집화하고, 키워드와 검색결과들 간의 적합도와 검색결과들 간의 연관성 정보를 3D 공간 상에 디스플레이 하는 'DocuSynth' 시스템을 개발하였다. 이 연관성 정보들은 실세계 상의 3 차원 메타포인 '거리'로 변환되어 디스플레이 된다. 즉, 사용자로 하여금 정보간의 거리가 가까울수록 연관도가 높다고 직관적으로 인지할 수 있는 화면으로 설계하였다. 또한 3D 환경의 사용성을 높이기 위해 네비게이션 컨트롤러와 컨트롤 변수에 대한 사용성 평가를 실시하여 시스템 변수로 적용하였다. 본 연구결과는 향후 도래할 3D Web 에 대한 아이디어 제시와 구현 가이드라인으로 활용될 것으로 예상된다.

  • PDF

SOM-Based State Generalization for Multiagent Reinforcement Learning (다중에이전트 강화학습을 위한 SOM기반의 상태 일한화)

  • 임문택;김인철
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.399-408
    • /
    • 2002
  • 다중 에이전트 학습이란 다중 에이전트 환경에서 에이전트간의 조정을 위한 행동전략을 학습하는 것을 말한다. 본 논문에서는 에이전트간의 통신이 불가능한 다중 에이전트 환경에서 각 에이전트들이 서로 독립적으로 대표적인 강화학습법인 Q학습을 전개함으로써 서로 효과적으로 협조할 수 있는 행동전략을 학습하려고 한다. 하지만 단일 에이전트 경우에 비해 보다 큰 상태-행동 공간을 갖는 다중 에이전트환경에서는 강화학습을 통해 효과적으로 최적의 행동 전략에 도달하기 어렵다는 문제점이 있다. 이 문제에 대한 기존의 접근방법은 크게 모듈화 방법과 일반화 방법이 제안되었으나 모두 나름의 제한을 가지고 있다. 본 논문에서는 대표적인 다중 에이전트 학습 문제의 예로서 먹이와 사냥꾼 문제(Prey and Hunters Problem)를 소개하고 이 문제영역을 통해 이와 같은 강화학습의 문제점을 살펴보고, 해결책으로 신경망 SOM을 이용한 일반화 방법인 QSOM 학습법을 제안한다. 이 방법은 기존의 일반화 방법과는 달리 군집화 기능을 제공하는 신경망 SOM을 이용함으로써 명확한 다수의 훈련 예가 없어도 효과적으로 이전에 경험하지 못했던 상태-행동들에 대한 Q값을 예측하고 이용할 수 있다는 장점이 있다. 또한 본 논문에서는 실험을 통해 QSOM 학습법의 일반화 효과와 성능을 평가하였다.

  • PDF

SOM_Based Generalization for Multiagent Reinforcement Learning (다중 에이전트 강화학습을 위한 SOM 기반의 일반화)

  • Lim, Mun-Tack;Kim, In-Cheol
    • Annual Conference of KIPS
    • /
    • 2002.04a
    • /
    • pp.565-568
    • /
    • 2002
  • 본 논문에서는 에이전트간의 통신이 불가능한 다중 에이전트 환경에서 각 에이전트들이 독립적이면서 대표적인 강화학습법인 Q-학습을 전개함으로써 서로 효과적으로 협조할 수 있는 행동전략을 학습하려고 한다. 하지만 단일 에이전트 경우에 비해 보다 큰 상태-행동공간을 갖는 다중 에이전트환경에서는 강화학습을 통해 효과적으로 최적의 행동 전략에 도달하기 어렵다는 문제점이 있다. 이 문제에 대한 기존의 접근방법은 크게 모듈화 방법과 일반화 방법이 제안되었으나 모두 나름의 제한을 가지고 있다. 본 논문에서는 대표적인 다중 에이전트 학습 문제의 예로서 the Prey and Hunters Problem를 소개하고 이 문제영역을 통해 이와 같은 강화학습의 문제점을 살펴보고, 해결책으로 신경망 SOM 을 이용한 일반화 방법을 제안한다. 이 방법은 다층 퍼셉트론 신경망과 역전파 알고리즘을 이용한 기존의 일반화 방법과는 달리 군집화 기능을 제공하는 신경망 SOM 을 이용함으로써 명확한 다수의 훈련 예가 없어도 효과적으로 채 경험하지 못한 상태-행동들에 대한 Q 값을 예측하고 이용할 수 있다는 장점이 있다.

  • PDF

Method of Image Similarity Analysis Using Sequence Alignment of Colors (색상 서열 비교를 통한 영상의 유사도 분석 기법)

  • Jung, In-Joon;Woo, Gyun
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.426-429
    • /
    • 2011
  • 영상처리를 이용한 영상간의 유사도 비교 기법은 영상의 검색 및 영상의 자동 인식 등을 위한 연구로 최근 각광받고 있다. 최근 영상 처리 기법은 화소의 질적 향상 및 처리시간 최적화, 효율적인 특정 요소의 추출 등 다양한 방법으로 시도되고 있다. 특히, 영상의 유사도 비교는 유사 영상 검색과 같은 경우에 많이 쓰인다. 영상의 유사도를 비교하기 위한 기법으로는 영상 데이터의 특징에 따라 대상 영역을 여러 영역으로 나누는 영역분할 기법과 군집화, 퍼지, 유전자 알고리즘 등이 있다. 본 논문에서는 영상을 HSV 색공간으로 변환한 후 색상 값에 대하여 전역 정렬 기법을 사용하는 유사도 측정 방법을 제시한다. 전역 정렬 기법은 유전자 서열 비교 기법 중 하나로서 두 유전체의 유사도를 측정하는데 사용된다. 유사도 측정 효율을 높이기 위해 색상 값을 8단계로 양자화하여 영상의 서열을 생성하였다. 실험결과 제시한 방법을 영상 회전이나 대칭, 글자 삽입 등의 간단한 연산에 크게 영향을 받지 않는 것으로 드러났다.

Similarity of Zooplankton Community Structure among Reservoirs in Yeongsan-Seomjin River Basin (영산강, 섬진강 수계 내 주요 저수지에 대한 동물플랑크톤 군집 구조의 유사성 분석)

  • Ko, Eui-Jeong;Kim, Gu-Yeon;Joo, Gea-Jae;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.4
    • /
    • pp.285-292
    • /
    • 2019
  • Our study was based on the long-term surveys with respect to the major reservoirs located in the Yeongsan and Seomjin river basins. A total of 45 survey sites have been surveyed four times a year from 2008 to 2017. We identified 166 zooplankton species, including 127 rotifers, 26 cladocerans, and 13 copepods. Mean population density and species number of small reservoirs were higher than those of mid and large reservoirs. Considering outliers exceeding the 90th percentile between species occupancy and mean abundance, 10 of 11 habitat generalists were rotifers, and Bosmina longirostris was the only cladoceran. Habitat specialist consisted of three species of rotifers and emerged from one to three survey sites. According to the modularity results, it was found that the survey sites covering the entire river basins were characterized into five groups, which was similar to the classification by maximum water surface areas(MWSA). The result of the eigenvector centrality showed that the size of MWSA had a greater impact on the similarity of zooplankton community structure between reservoirs than the difference in distance between reservoirs. In the case of survey points in near dam or estuary bank of Juam and Youngsan reservoirs, modularity class were separated from other internal survey points of those. Given that the zooplankton interactions may contribute to freshwater functions more than species diversity. These topological features provide new insight into studying zooplankton distribution patterns, their organization and impacts on freshwater-associated function.

Field and remote acquisition of hyperspectral information for classification of riverside area materials (현장 및 원격 초분광 정보 계측을 통한 하천 수변공간 재료 구분)

  • Shin, Jaehyun;Seong, Hoje;Rhee, Dong Sop
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1265-1274
    • /
    • 2021
  • The analysis of hyperspectral characteristics of materials near the South Han River has been conducted using riverside area measurements by drone installed hyperspectral sensors. Each spectrum reflectance of the riverside materials were compared and analyzed which were consisted of grass, concrete, soil, etc. To verify the drone installed hyperspectral measurements, a ground spectrometer was deployed for field measurements and comparisons for the materials. The comparison results showed that the riverside materials had their unique hyperspectral band characteristics, and the field measurements were similar to the remote sensing data. For the classification of the riverside area, the K-means clustering method and SVM classification method were utilized. The supervised SVM method showed accurate classification of the riverside area than the unsupervised K-means method. Using classification and clustering methods, the inherent spectral characteristic for each material was found to classify the riverside materials of hyperspectral images from drones.