• 제목/요약/키워드: 골격 데이터

검색결과 115건 처리시간 0.029초

ICP 정합과 신경망을 이용한 해마의 3차원 형상 분석 (3D Shape Analysis for the Hippocampus Using ICP Registration and Neural Networks)

  • 김정식;최수미;김용국;김명희
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제10권4호
    • /
    • pp.27-36
    • /
    • 2004
  • 본 논문에서는 뇌의 하부구조인 해마를 정확하게 분석하기 위한 형상 정규화 방법과 정상인과 간질 환자의 해마를 분류하기 위한 방법을 제시한다. 해마에 대한 형상 분석 과정은 크게 형상 표현을 구축하는 과정, 형상의 유사도를 측정하는 과정, 정상인 집단과 환자 집단을 분류하는 과정으로 이루어진다. 본 연구에서는 해마의 형상 표현으로 메쉬, 골격, 복셀로 이루어진 하이브리드 옥트리 자료구조를 구축하였다. 또한 Iterative Closest Point (ICP) 알고리즘을 사용하여 해마 골격을 기반으로 한 정규화를 수행하였다. 그리고 정규화된 해마 형상을 전역적, 국부적으로 분석하여 최종적으로 입력된 해마가 정상인 또는 간질 환자에 속하는지를 학습된 데이터를 이용하여 분류하였다. 본 논문에서 제시한 ICP 기반의 정규화 방법은 3차원 해마 형상을 정확하게 분석하게 해주고, 골격의 정점 수를 조절함으로써 정규화 시간을 감소시킬 수 있다. 뿐만 아니라 3차원 해마 모델의 형상을 신경망을 통하여 학습시킴으로써 해마의 형상이 변형된 환자 집단과 정상인 집단을 분류하는데 이용할 수 있다.

  • PDF

근감소증 진단을 위한 척추 분류 모델 개발 및 검증 (Development and Validation of Spine Classification Model for Sarcopenia Diagnosis and Validation)

  • 이충섭;임동욱;노시형;박철;정창원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.475-478
    • /
    • 2023
  • 컴퓨터 단층촬영(CT)을 활용한 골격근 단면적은 근감소증과 관련된 기능을 평가하는 데 사용된다. 일반적인 근감소증 연구는 요추 3번의 골격근량을 주로 보지만 암 또는 폐절제술과의 상관관계를 예측하기 위한 다양한 연구에서는 흉추 4번, 7번, 8번, 10번, 12번 다양한 수준의 골격근량으로 연구를 진행하고 있음을 알 수 있다. 본 논문에서는 흉부와 복부 CT 영상에서 근감소증 진단을 위해서 흉추와 요추의 영역별 슬라이스를 검출하기 위해서 CNN 구조의 EfficientNetV2를 전이학습하여 인공지능 모듈을 개발하였다. 인공지능 모듈은 전체 흉부 및 복부 CT 영상에서 Cervical, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, L1, L2, L3, L4, L5, Sacral 총 19 클래스를 검출하도록 하였다. Test 데이터셋을 사용하여 Confusion Matrix와 Grad-CAM으로 모델의 정확도를 시각화하여 보였으며 검증으로 인공지능 모듈의 정확성을 측정하였다. 끝으로 우리가 개발한 다기관 공동연구 지원플랫폼에 적용하여 시각화된 결과를 보였다.

불확도를 고려한 골격성 3급 부정교합 환자의 측방 두부방사선영상 계측값의 측정 (Lateral Cephalometric Measurement of Skeletal Class III malocclusion Patients with Uncertainty)

  • 성영제;송지수;현홍근;김영재;김정욱;장기택;이상훈;신터전
    • 대한소아치과학회지
    • /
    • 제47권4호
    • /
    • pp.416-426
    • /
    • 2020
  • 이번 연구의 목표는 기존의 연구로 소급성이 확보된 측방 두부계측방사선영상 분석 프로그램을 이용하여, 골격성 3급 부정교합 환아의 교정 계측값의 불확도를 계산하는 것이다. 이를 통해 골격성 3급 부정교합 환아의 측방 두부방사선사진영상 계측값의 참조 표준을 마련하고자 하였다. 2017년 3월 1일부터 2020년 3월까지 3년간 서울대학교 치과병원 소아치과에 내원한 만 6세에서 10세 사이의 환아 중 골격성 3급 부정교합으로 진단받은 144명의 환자의 데이터를 이용하였다. 이전의 연구에서 소급성이 확보된 계측 프로그램을 이용하여 교정 계측값을 측정하였다. 불확도의 측정은 A형 불확도와 B형 불확도로 나누어서 이루어졌으며, 이를 통해 합성표준불확도와 확장 불확도를 계산하였다. 이를 바탕으로, 골격성 3급 부정교합의 교정 계측값의 참조 표준을 제시하고, 골격성 1급 부정교합의 참조 표준과 비교하였다. 이번 연구를 통해, 만 6 - 10세 사이 골격성 3급 부정교합 환아 교정 계측치의 불확도를 계산하여 95%의 신뢰도를 가지는 교정 계측값의 분포 범위를 제시하고자 하였다.

쾌속 조형 기술의 의료 분야 적용 (Rapid Prototyping in Medical Application)

  • 이종기;김종세;김철영;김남국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.172-175
    • /
    • 2001
  • 쾌속조형기술은 제품 설계나 기타 물체의 형상 데이터로부터 광경화성 수지, 금속 등 다양한 재료를 이용하여 수 시간 내에 실물 모형을 제작할 수 있는 기술이다. 쾌속조형기술은 주로 자동차나 제품의 모형제작에 주로 사용되어 왔다. 사이버메드에서는 인체에 대한 3차원 형상화 기술과 쾌속조형기술을 이용하여 개인별로 상이한 인체 골격에 대한 비교적 저렴한 비용으로 실물 모형을 제작할 수 있는 기술을 개발하여, 국내 및 일본의 병원에서 수술 계획 및 모형 수술에 직접 적용하고 있다. 이 논문은 쾌속 조형 기술, 인체의 3차원 형상화 기술의 개요와 그 동향, 그리고 이를 결합한 수술용 인체 골격모형의 제작 기술과 적용 사례에 대해서 기술하였다.

  • PDF

모음 우선 인식에 의한 즐단위 필기체 한글의 인식 (Recognition of Handprinted Hangul Line using Vowel Pre-Recognition Method)

  • 함경수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1994년도 제6회 한글 및 한국어정보처리 학술대회
    • /
    • pp.195-200
    • /
    • 1994
  • 본 논문에서는 글자 구분선 없이 자유로이 쓰여진 필기체 한글의 인식 방안을 보인다. 즐단위의 한글 입력 영상에서 글자의 골격선을 추출하는 새로운 방법과 골격선들 간의 접촉점과 끝점을 그래프의 노드로 표현하고, 획은 그래프의 가지로 표현하는 방안을 보인다. 한글의 글자 구성 원리는 모음을 중심으로 모아쓰므로, 그래프로 표현된 즐단위의 한글에서 모음의 시작위치 및 속성을 가지는 로드로부터 한글의 모음을 가장 먼저 유도하여 인식하고, 우측 글자 및 자소끼리의 접촉을 분리하여 초성 자음 및 종성 자음을 인식하여, 좌에서 우의 방향으로 한 문자씩 인식해 나간다. 본 논문에서의 자유로이 필기된 한글의 인식 실험은 우리나라의 주소 50개를 서로 다른 25인이 필기한 영상 데이터를 사용하였고 한글 문자의 인식율은 89%이다.

  • PDF

기계 학습을 활용한 자가 운동치료 웹 페이지 (Self-exercise Therapy Web Page using Machine Learning)

  • 김혜리;김수빈;조민규;고희정;이형봉
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.491-493
    • /
    • 2021
  • 최근 코로나 19 상황으로 인해 많은 사람들이 모이는 병원 방문을 꺼리거나, 치료비에 부담을 느끼는 근골격계 재활 환자들이 많다. 이러한 환자들을 위해 이 프로젝트에서는 재활 치료 빈도가 높은 어깨와 손목 등 여섯 가지 근골격 부위의 자가 재활 치료를 돕는 기계 학습 기반 웹 페이지을 구현한다. 이 웹 페이지는 각 부위에 대한 재활 치료 자세를 구글 티처블 머신으로 학습 시킨 데이터를 기반으로 환자가 올바른 자세로 운동하는지를 판별해 준다. 이 때, 사용자의 재활 치료 자세는 웹 카메라로부터 캡쳐한다.

외골격 로봇의 동작인식을 위한 보행의 운동학적 요인을 이용한 보행유형 분류 (Gait Type Classification Based on Kinematic Factors of Gait for Exoskeleton Robot Recognition)

  • 조재훈;봉원우;김동현;최현기
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권3호
    • /
    • pp.129-136
    • /
    • 2017
  • 외골격 로봇은 군사, 산업 및 의료와 같은 다양한 분야에서 사용되도록 개발된 기술이다. 외골격 로봇은 착용자의 움직임을 감지하여 작동한다. 외골격 로봇이 착용자의 일상적인 행동을 인지함으로써 착용자를 신속하게 보조하고 시스템을 효율적으로 활용할 수 있다. 본 연구에서는 피실험자로부터 얻은 운동학적 데이터를 통해 LDA, QDA, kNN을 활용하여 보행유형을 분류한다. 보행은 주로 일상생활에서 수행되는 일반보행과 계단보행을 선정하였다. 피실험자에게 7개의 IMUs 센서를 정해진 위치에 부착하여 운동학적 요소를 측정 하였다. 결과적으로, LDA는 78.42%, QDA는 86.16%, kNN는 k값에 따라 87.10% ~ 94.49%의 정확도로 분류하였다.

RGBD 카메라 기반의 Human-Skeleton Keypoints와 2-Stacked Bi-LSTM 모델을 이용한 낙상 탐지 (Fall Detection Based on 2-Stacked Bi-LSTM and Human-Skeleton Keypoints of RGBD Camera)

  • 신병근;김응호;이상우;양재영;김원겸
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.491-500
    • /
    • 2021
  • 본 연구에서는 MS Kinect v2 RGBD 카메라 기반의 Human-Skeleton Keypoints와 2-Stacked Bi-LSTM 모델을 이용하여 낙상 행위를 탐지하는 방법을 제안한다. 기존의 연구는 RGB 영상에서 OpenPose 등의 딥러닝 모델을 이용하여 골격 정보를 추출한 후 LSTM, GRU 등의 순환신경망 모델을 이용해 인식을 수행하였다. 제안한 방법은 카메라로부터 골격정보를 바로 전달 받아 가속도 및 거리의 2개의 시계열 특징을 추출한 후 2-Stacked Bi-LSTM 모델을 이용하여 낙상 행위를 인식하였다. 어깨, 척추, 골반 등 주요 골격을 대상으로 중심관절을 구하고 이 중심관절의 움직임 가속도와 바닥과의 거리를 특징으로 제안하였다. 추출된 특징은 Stacked LSTM, Bi-LSTM 등의 모델과 성능비교를 수행하였고 GRU, LSTM 등의 기존연구에 비해 향상된 검출 성능을 실험을 통해 증명하였다.

SMPL을 이용한 노변 네트워크 캐쉬 성능 분석기의 구현 (Implementation of a cache performance analyzer for roadside network based on SMPL)

  • 이정훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.1045-1046
    • /
    • 2009
  • 본 논문에서는 이산 이벤트 시뮬레이터인 SMPL을 이용하여 노변 네트워크에서의 데이터 처리에 따르는 데이터 캐쉬 성능분석기를 구현한다. 구현된 성능분석기는 SMPL의 요청 도착과 서비스 사건 처리를 기본 골격으로 하여 실제 차량의 궤적 데이터에 기반한 데이터 요청 생성부와 큐잉 정책과 캐쉬 정책을 선택할 수 있는 정책 처리부 등으로 구성된다. 이 분석기는 서비스율, 해당 정책, 캐쉬의 크기 등의 수행인자를 설정하여 이에 따르는 큐 길이의 분포, 캐쉬의 히트율, 요청 처리시간의 분포 등을 측정할 수 있도록 한다. 추정된 성능 요소를 기반으로 노변 네트워크에 기반한 차량 텔레매틱스 시스템에서 RSU(RoadSide Unit)의 배치, 성능 요구사항 분석, 새로운 큐잉 정책과 캐쉬 정책의 설계 등 다양한 응용이 가능하다.

PoseNet과 GRU를 이용한 Skeleton Keypoints 기반 낙상 감지 (Human Skeleton Keypoints based Fall Detection using GRU)

  • 강윤규;강희용;원달수
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.127-133
    • /
    • 2021
  • 낙상 판단을 위한 최근 발표되는 연구는 RNN(Recurrent Neural Network)을 이용한 낙상 동작 특징 분석과 동작 분류에 집중되어 있다. 웨어러블 센서를 기반으로 한 접근 방식은 높은 탐지율을 제공하나 사용자의 착용 불편으로 보편화 되지 못했고 최근 영상이나 이미지 기반에 딥러닝 접근방식을 이용한 낙상 감지방법이 소개 되었다. 본 논문은 2D RGB 저가 카메라에서 얻은 영상을 PoseNet을 이용해 추출한 인체 골격 키포인트(Keypoints) 정보로 머리와 어깨의 키포인트들의 위치와 위치 변화 가속도를 추정함으로써 낙상 판단의 정확도를 높이기 위한 감지 방법을 연구하였다. 특히 낙상 후 자세 특징 추출을 기반으로 Convolutional Neural Networks 중 Gated Recurrent Unit 기법을 사용하는 비전 기반 낙상 감지 솔루션을 제안한다. 인체 골격 특징 추출을 위해 공개 데이터 세트를 사용하였고, 동작분류 정확도를 높이는 기법으로 코, 좌우 눈 그리고 양쪽 귀를 포함하는 머리와 어깨를 하나의 세그먼트로 하는 특징 추출 방법을 적용해, 세그먼트의 하강 속도와 17개의 인체 골격 키포인트가 구성하는 바운딩 박스(Bounding Box)의 높이 대 폭의 비율을 융합하여 실험을 하였다. 제안한 방법은 기존 원시골격 데이터 사용 기법보다 낙상 탐지에 보다 효과적이며 실험환경에서 약 99.8%의 성공률을 보였다.