• Title/Summary/Keyword: 곤충발자국

Search Result 10, Processing Time 0.031 seconds

Insect Footprint Recognition Using Trace Transform and Fuzzy Weighted Mean (Trace 변환과 퍼지 가중치 평균을 이용한 곤충 발자국 인식)

  • Shin, Bok-Suk;Kim, Kwang-Baek;Woo, Young-Woon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2008.06a
    • /
    • pp.143-147
    • /
    • 2008
  • 이 논문에서는 곤충 발자국의 패턴을 인식하기 위해, Trace 변환을 이용하여 발자국의 인식에 필요한 특징을 추출하는 기법을 제안한다. Trace 변환을 이용하면 패턴의 이동, 회전, 반사에 불변하는 특징값을 얻을 수 있다. 이러한 특징값들은 곤충 발자국과 같이 다양한 변형이 존재하는 패턴을 인식하는 데에 적합하다. 이 방법은 특징값을 추출하기 위해서 병렬로 표현되는 trace-line을 따라 특징들을 일차적으로 도출하고, 또 다시 도출된 특징들은 diametric, circus 단계의 함수를 거치면서 새로운 특징값으로 재구성된다. 곤충의 발자국 패턴을 이용하여 실험한 결과 곤충 발자국의 이동, 회전 반사에 관계없이 동일한 특징값이 추출됨을 확인할 수 있고, 곤충발자국의 고유한 패턴을 찾아 인식하기 위해서 추출된 특징값들은 퍼지 가중치 평균을 이용하여 인식 실험을 수행하고 그 결과를 제시하였다.

  • PDF

Feature Extraction Using Trace Transform for Insect footprint Recognition (곤충 발자국 패턴 인식을 위한 Trace Transform 기반의 특징값 추출)

  • Shin, Bok-Suk;Cha, Eui-Young;Cho, Kyoung-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.313-316
    • /
    • 2008
  • 이 논문에서는 곤충 발자국의 패턴을 인식하기 위해, 인식의 기본 단위인 세그먼트를 자동 추출하는 기법과 Trace transform을 이용하여 발자국 인식에 필요한 특징을 추출하는 기법을 제안하였다. Trace transform 방법을 이용하면 패턴의 크기, 이동, 회전, 반사에 불변하는 특징값을 얻을 수 있다. 이러한 특징값들은 곤충 발자국과 같이 다양한 변형이 존재하는 패턴을 인식하는 데에 적합하다. 특징값을 도출하기 위한 첫 번째 단계로는 추출된 세그먼트에 대한 Trace transform을 통해 새로운 Trace 이미지를 생성시킨다. 그런 다음 병렬로 표현되는 trace-line을 따라 특성 함수에 의해 특징들이 일차적으로 도출되고, 또 다시 도출된 특징들은 diametric, circus 단계의 함수를 거치면서 새로운 특징값으로 재구성된다. 2가지 서로 다른 곤충의 발자국 패턴을 이용하여 실험한 결과 곤충 발자국의 크기, 이동, 회전, 반사에 관계없이 인식에 적합한 특징값들이 추출됨을 확인할 수 있었다.

  • PDF

Preprocessing Methods for Insect Identification Using Footprints (발자국 패턴을 이용한 곤충 판별 기법을 위한 전처리 과정)

  • Woo, Young-Woon;Cho, Kyoung-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.485-488
    • /
    • 2005
  • The comparison of 3 conventional binarization methods for insect footprints and the result of performance evaluation using a proposed performance criterion are introduced in this paper. The 3 different binarization algorithms for comparison are based on different category each, and the proposed performance criterion is based on the characteristics of insect footprints which have very smaller foreground area than background area. In the experiments, average performance results using 71 test images are compared and analyzed. The higher-order entropy binarization algorithm proposed by Abutaleb showed the best result for pattern recognition applications of insect footprints.

  • PDF

Insect Footprint Recognition using Trace Transform and a Fuzzy Method (Trace 변환과 펴지 기법을 이용한 곤충 발자국 인식)

  • Shin, Bok-Suk;Cha, Eui-Young;Woo, Young-Woon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1615-1623
    • /
    • 2008
  • This paper proposes methods to classify scanned insect footprints. We propose improved SOM and ART2 algorithms for extracting segments, basic areas for feature extraction, and utilize Trace transform and fuzzy weighted mean methods for extracting feature values for classification of the footprints. In the proposed method, regions are extracted by a morphological method in the beginning, and then improved SOM and ART2 algorithms are utilized to extract segments regardless of kinds of insects. Next, A Trace transform method is used to find feature values suitable for various kinds of deformation of insect footprints. In the Trace transform method, Triple features from reconstructed combination of diverse functions, are used to classify the footprints. In general, it is very difficult to decide automatically whether the extracted footprint segment is meaningful for classification or not. So we use a fuzzy weighted mean method for not excluding uncertain footprint segments because the uncertain footprint segments may be possible candidates for classification. We present experimental results of footprint segment extraction and segment classification by the proposed methods.

  • PDF

A Fuzzy Weights Decision Method based on Degree of Contribution for Recognition of Insect Footprints (곤충 발자국 인식을 위한 기여도 기반의 퍼지 가중치 결정 방법)

  • Shin, Bok-Suk;Cha, Eui-Young;Woo, Young-Woon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.55-62
    • /
    • 2009
  • This paper proposes a decision method of fuzzy weights by utilizing degrees of contribution in order to classify insect footprint patterns having difficulties to classify species clearly. Insect footprints revealed delicately in the form of scattered spots since they are very small. Therefore it is not easy to define shape of footprints unlike other species, and there are lots of noises in the footprint patterns so that it is difficult to distinguish those from correct data. For these reasons, the extracted feature set has obvious feature values with some uncertain feature values, so we estimate weights according to degrees of contribution. If the one of feature values has distinct difference enough to decide a class among other classes, high weight is assigned to make classification. A calculated weight determines the membership values by fuzzy functions and objects are classified into the class having a superior value.atu present experimental resultseighrontribution. Iinsect footprints with noises by the proposed method.

Hierarchical Nearest-Neighbor Method for Decision of Segment Fitness (세그먼트 적합성 판단을 위한 계층적 최근접 검색 기법)

  • Shin, Bok-Suk;Cha, Eui-Young;Lee, Im-Geun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.418-421
    • /
    • 2007
  • In this paper, we proposed a hierarchical nearest-neighbor searching method for deciding fitness of a clustered segment. It is difficult to distinguish the difference between correct spots and atypical noisy spots in footprint patterns. Therefore we could not completely remove unsuitable noisy spots from binarized image in image preprocessing stage or clustering stage. As a preprocessing stage for recognition of insect footprints, this method decides whether a segment is suitable or not, using degree of clustered segment fitness, and then unsuitable segments are eliminated from patterns. Removing unsuitable segments can improve performance of feature extraction for recognition of inset footprints.

  • PDF

Feature Extraction Using Trace Transform for Insect Footprint Recognition (곤충 발자국 패턴 인식을 위한 Trace Transform 기반의 특징값 추출)

  • Shin, Bok-Suk;Cho, Kyoung-Won;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.1095-1100
    • /
    • 2008
  • In a process of insect foot recognition, footprint segments as basic areas for recognition need to be extracted from scanned insect footprints and appropriate features should be found from the footprint segments in order to discriminate kinds of insects, because the characteristics of the features are important to classify insects. In this paper, we propose methods for automatic footprint segmentation and feature extraction. We use a Trace transform method in order to find out appropriate features from the extracted segments by the above methods. The Trace transform method builds a new type of data structure from the segmented images by functions using parallel trace lines and the new type of data structure has characteristics invariant to translation, rotation and reflection of images. This data structure is converted to Triple features by Diametric and Circus functions, and the Triple features are used for discriminating patterns of insect footprints. In this paper, we show that the Triple features found by the proposed methods are enough distinguishable and appropriate for classifying kinds of insects.

Extraction of Basic Insect Footprint Segments Using ART2 of Automatic Threshold Setting (자동 임계값 설정 ART2를 이용한 곤충 발자국의 인식 대상 영역 추출)

  • Shin, Bok-Suk;Cha, Eui-Young;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1604-1611
    • /
    • 2007
  • In a process of insect footprint recognition, basic footprint segments should be extracted from a whole insect footprint image in order to find out appropriate features for classification. In this paper, we used a clustering method as a preprocessing stage for extraction of basic insect footprint segments. In general, sizes and strides of footprints may be different according to type and sire of an insect for recognition. Therefore we proposed an improved ART2 algorithm for extraction or basic insect footprint segments regardless of size and stride or footprint pattern. In the proposed ART2 algorithm, threshold value for clustering is determined automatically using contour shape of the graph created by accumulating distances between all the spots of footprint pattern. In the experimental results applying the proposed method to two kinds of insect footprint patterns, we could see that all the clustering results were accomplished correctly.

Automatic Extraction Method for Basic Insect Footprint Segments (곤충 발자국 인식을 위한 자동 영역 추출기법)

  • Shin, Bok-Suk;Woo, Young-Woon;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.275-278
    • /
    • 2007
  • In this paper, we proposed a automatic extraction method as a preprocessing stage for extraction of basic insect footprint segments. In general, sizes and strides of footprints may be different according to type and size of an insect for recognition. Therefore we proposed an improved algorithm for extraction of basic insect footprint segments regardless of size and stride of footprint pattern. In the proposed algorithm, threshold value for clustering is determined automatically using contour shape of the graph created by accumulating distances between all the spots of footprint pattern. In the experimental results applying the proposed method, The basic footprint segments should be extracted from a whole insect footprint image using significant information in order to find out appropriate features for classification.

  • PDF

Bird Tracks from the Gyeongsang Basin of the Korean Peninsula: A Paradise of Mesozoic Birds (중생대 새의 낙원 한반도 경상 분지에서 산출되는 새 발자국 화석)

  • Kim, Jeong Yul;Kim, Kyung Soo;Lim, Jong Deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.1
    • /
    • pp.40-61
    • /
    • 2009
  • The Cretaceous Gyeongsang Supergroup, composed of clastic sediments mostly deposited in the lacustrine and fluvial environment, is widely distributed in the southern part of the Korean Peninsula. Diverse fossils of plants, molluscs, insects, footprints of dinosaurs, pterosaurs and birds, and eggs, bones, and teeth of dinosaurs have been found from the Gyeongsang Supergroup. New types of dinosaur, pterosaur, and bird tracks recently discovered from the Gyeongsang Supergroup attract great attention from the world. Several tracksites of dinosaurs and birds were designated as Natural Monument and nationally conserved, and many efforts have given to them for nomination of UNESCO World Heritage. Bird tracks from the Gyeonsang Supergroup are Koreanaornis hamanensis, Jindongornipes kimi, Goseongornipes markjonesi, Ignotornis yangi, Uhangrichnus chuni, and Hwangsanipes choughi, which correspond approximately one third of Mesozoic bird tracks recorded from the world. The Gyeongsang Basin of the Korean Peninsula yields world most diverse bird tracks which may be called a paradise of Mesozoic birds and they are important natural heritage providing significant information about evolution and paleogeographic distribution of birds.