• Title/Summary/Keyword: 고체 표면

Search Result 511, Processing Time 0.026 seconds

Marangoni Convection Effects on Crystal Growth (결정 성장에서 Marangoni 대류의 영향)

  • 강승민;최종건;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.2
    • /
    • pp.77-82
    • /
    • 1992
  • When a crystal is grown by FZ process, the melt zone is located at between the solid of upper and lower side and is kept by the solid-liquid interface tension. On the surface of the melt zone, a surface tension gradient is occured by the difference of temperature and solute concentration, it is the driving force of marangoni flow. The crystal even in the steady state growth can become imperfect for the dislocation distribution and the solute concentration in the peripheral region of the crystal are higher than those in the inner part and the probability of the formation of the defects such as voids, bubble penetration, secondary phase creation and crack is high near the solid-liquid interface. This is because the solid -liquid interface becomes irregular because of the local variation of temperature in that region due to marangoni convection.

  • PDF

Reactivity of Biogenic Manganese Oxide for Metal Sequestration and Photochemistry: Computational Solid State Physics Study (전산 고체물리를 이용한 바이오 산화망간 광물의 금속흡착과 광화학 반응도의 이해)

  • Kwon, Ki-Deok D.;Sposito, Garrison
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.161-170
    • /
    • 2010
  • Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

Study on Morphology and Current-Voltage (I-V) property of Arachidic acid Thin film by LB method (LB법을 이용한 Arachidic acid 박막의 표면이미지와 I-V특성 연구)

  • Ryu, Kil-Yong;Lee, Nam-Suk;Park, Sang-Hun;Park, Jae-Chul;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.394-395
    • /
    • 2006
  • 본 연구에서는 Arachidic acid Langmuir-Blodgett (LB) 막의 표면이미지와 전압-전류 특성을 측정하였다. Arachidic acid는 포화지방산으로 ($CH3(CH_2)_{18}$ COOH)의 구조를 가지며, 크기가 $27.5\;{\AA}$으로 $CH_3(CH_2)_{18}$의 소수기와 COOH의 친수기로 구성되어 있어, LB Trough를 사용하여 박막제작과 분자제어가 쉽다. Chloroform을 용매로 하여 2mmol/l의 농도를 조성하여 ${\pi}$-A 등온선을 통해 기체 상태, 액체 상태, 고체 상태를 관찰하였다. LB막의 제작 및 평가에서 막의 안정성은 ${\pi}$-A곡선, AFM (Atomic force microscopy) 등을 통하여 확인 하였다. 또한 LB 막을 Metal/LB막/Metal 구조의 소자로 제작하여 전압-전류 특성을 측정하였다.

  • PDF

A study on the development of thin solid state batteries (박막 고체전지 개발에 관한 연구)

  • 권혁상;이홍로
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.5
    • /
    • pp.215-221
    • /
    • 1992
  • This research is aimed at developing(110) preferred TiS2 cathode films and glass typed solid electro-lytes which have high ionic migrations and low electron conductivities for thin secondary solid batteries. To obtain preferred oriented TiS2 thin films on a substrate by CVD method using TiCl4 and H2S gases three factors of heating temperature, inner pressure of furnace and TiCl4/H2S gas mole fraction were ex-amined systematically. To obtain solid films of Li2O-B2O3-SiO2 electrolytes by r.f. sputtering for thin proto-type batteries of Li/Li2O-B2O3-SiO2TiS2, sputtering conditions were examined. TiS2 cathode films showed columnar structure, namely c axis oriented parallely. At low pressure of reaction chamber and low heating temperature, surface of smooth TiS2 films couldd be obtained. Ionic conductivity of Li2O-B2O3-SiO2 films manufactured by r.f. magnetron sputtering were 3$\times$10-7$\Omega$-1cm-1 and electron conductivities were 10-11$\Omega$-1cm-1. Open cell voltage of thin lithium batteries were 2.32V with a designed prototype cell.

  • PDF

Numerical Study and Thrust Prediction of Pintle-Controlled Nozzle with Split-line TVC System (스플릿라인 TVC 시스템을 적용한 핀틀 추력조절 노즐의 유동해석 및 추력 성능 예측)

  • Jo, Hana
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.43-53
    • /
    • 2022
  • In this study, analysis of the flow characteristics of pintle-controlled nozzle with split-line TVC system and the thrust performance prediction was performed. The numerical computation was verified by comparing the thrust coefficient derived from the analysis results with the experimental data. By applying the same numerical analysis technique, the flow characteristics of nozzle were confirmed according to operating altitude, pintle stroke position and TVC angle with the 1/10 scale. As the TVC angle increased, thrust loss occurred and the tendency of AF was different depending on the position of the pintle stroke. Based on the analysis results, the relation of thrust coefficient was derived by applying the response surface methods. The thrust performance model with a slight difference of 1.2% on average from the analysis result was generated.

Understanding the Mechanism of Solid Electrolyte Interface Formation Mediated by Vinylene Carbonate on Lithium-Ion Battery Anodes (리튬 이온 배터리 음극에서 비닐렌 카보네이트가 매개하는 고체 전해질 계면 형성 메커니즘 연구)

  • Jinhee Lee;Ji-Yoon Jeong;Jaeyun Ha;Yong-Tae Kim;Jinsub Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.115-124
    • /
    • 2024
  • In advancing Li-ion battery (LIB) technology, the solid electrolyte interface (SEI) layer is critical for enhancing battery longevity and performance. Formed during the charging process, the SEI layer is essential for controlling ion transport and maintaining electrode stability. This research provides a detailed analysis of how vinylene carbonate (VC) influences SEI layer formation. The integration of VC into the electrolyte markedly improved SEI properties. Moreover, correlation analysis revealed a connection between electrolyte decomposition and battery degradation, linked to the EMC esterification and dicarboxylate formation processes. VC facilitated the formation of a more uniform and chemically stable SEI layer enriched with poly(VC), thereby enhancing mechanical resilience and electrochemical stability. These findings deepen our understanding of the role of electrolyte additives in SEI formation, offering a promising strategy to improve the efficiency and lifespan of LIBs.

Statistical Optimization of Solid Growth-medium for Rapid and Large Screening of Polysaccharides High-yielding Mycelial Cells of Inonotus obliquus (단백다당체 고생산성의 Inonotus obliquus 균주의 신속 개량을 위한 고체 성장배지의 통계적 최적화)

  • Hong, Hyung-Pyo;Jeong, Yong-Seob;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.142-154
    • /
    • 2010
  • The protein-bound innerpolysaccharides (IPS) produced by suspended mycelial cultures of Inonotus obliquus have promising potentials as an effective antidiabetic as well as an immunostimulating agents. To enhance IPS production, intensive strain improvement process should be carried out using large amount of UV-mutated protoplasts. During the whole strain-screening process, the stage of solid growth-culture was found to be the most time-requiring step, thus preventing rapid screening of high-yielding producers. In order to reduce the cell growth period in the solid growth-stage, therefore, solid growth-medium was optimized using the statistical methods such as (i) Plackett-Burman and fractional factorial designs (FFD) for selecting positive medium components, and (ii) steepest ascent (SAM) and response surface (RSM) methods for determining optimum concentrations of the selected components. By adopting the medium composition recommended by the SAM experiment, significantly higher growth rate was obtained in the solid growth-cultures, as represented by about 41% larger diameter of the cell growth circle and higher mycelial density. Sequential optimization process performed using the RSM experiments finally recommended the medium composition as follows: glucose 25.61g/L, brown rice 12.53 g/L, soytone peptone 12.53 g/L, $MgSO_4$ 5.53 g/L, and agar 20 g/L. It should be noted that this composition was almost similar to the medium combinations determined by the SAM experiment, demonstrating that the SAM was very helpful in finding out the final optimum concentrations. Through the use of this optimized medium, the period for the solid growth-culture could be successfully reduced to about 8 days from the previous 15~20 days, thus enabling large and mass screening of high producers in a relatively short period.

Analysis of Hydrodynamics in a Directly-Irradiated Fluidized Bed Solar Receiver Using CPFD Simulation (CPFD를 이용한 태양열 유동층 흡열기의 수력학적 특성 해석)

  • Kim, Suyoung;Won, Geunhye;Lee, Min Ji;Kim, Sung Won
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.535-543
    • /
    • 2022
  • A CPFD (Computational particle fluid dynamics) model of solar fluidized bed receiver of silicon carbide (SiC: average dp=123 ㎛) particles was established, and the model was verified by comparing the simulation and experimental results to analyze the effect of particle behavior on the performance of the receiver. The relationship between the heat-absorbing performance and the particles behavior in the receiver was analyzed by simulating their behavior near bed surface, which is difficult to access experimentally. The CPFD simulation results showed good agreement with the experimental values on the solids holdup and its standard deviation under experimental condition in bed and freeboard regions. The local solid holdups near the bed surface, where particles primarily absorb solar heat energy and transfer it to the inside of the bed, showed a non-uniform distribution with a relatively low value at the center related with the bubble behavior in the bed. The local solid holdup increased the axial and radial non-uniformity in the freeboard region with the gas velocity, which explains well that the increase in the RSD (Relative standard deviation) of pressure drop across the freeboard region is responsible for the loss of solar energy reflected by the entrained particles in the particle receiver. The simulation results of local gas and particle velocities with gas velocity confirmed that the local particle behavior in the fluidized bed are closely related to the bubble behavior characterized by the properties of the Geldart B particles. The temperature difference of the fluidizing gas passing through the receiver per irradiance (∆T/IDNI) was highly correlated with the RSD of the pressure drop across the bed surface and the freeboard regions. The CPFD simulation results can be used to improve the performance of the particle receiver through local particle behavior analysis.

Mono-layer Compositional Analysis of Surface of Mineral Grains by Time-of-Flight Secondary-Ion Mass Spectrometry (TOF-SIMS) (TOF-SIMS를 이용한 광물 표면의 단층조직 분석 연구)

  • Kong Bong Sung;Chryssoulis Stephen;Kim Joo Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.127-134
    • /
    • 2005
  • Although the bulk composition of materials is one of the major considerations in extractive metallurgy and environmental science, surface composition and topography control surface reactivity, and consequently play a major role in determining metallurgical phenomena and pollution by heavy metals and organics. An understanding of interaction mechanisms of different chemical species at the mineral surface in an aqueous media is very important in natural environment and metallurgical processing. X-ray photoelectron spectroscopy (XPS) has been used as an ex-situ analytical technique, but the material to be analyzed can be any size from $100\;{\mu}m$ up to about 1 cm. It can also measure mixed solids powders, but it is impossible to ascertain the original source of resulting x-ray signals where they were emitted from, since it radiates and scans the macro sample surface area. The study demonstrated the ability of TOF-SIMS to detect individual organic species on the surfaces of mineral particles from plant samples and showed that the TOF-SIMS techniques provides an excellent tool for establishing the surface compositions of mineral grains and relative concentrations of chemicals on mineral species.

A study of drop spreading between moving solid plates (움직이는 고체판 사이에서 액적의 퍼짐에 관한 연구)

  • Kwon, Hyuk-Min;Kim, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2967-2970
    • /
    • 2007
  • In a usual painting process, a liquid drop spreads on canvas by being dragged along a paintbrush. To obtain the fundamental understanding of the painting process from the mechanical point of view, we experimentally investigate various dynamic behavior of a liquid drop that spreads between moving solid plates. It is shown that three distinct types of drop spreading take place, i.e. shearing, spreading, and intact dragging, depending on the liquid viscosity and surface tension, the plate speed, and the wettability. We suggest a regime map based on the capillary number and the receding contact angle, which indicates the boundaries between different types of spreading behavior in a dimensionless space.

  • PDF