• Title/Summary/Keyword: 고준위처분

Search Result 144, Processing Time 0.024 seconds

Radiological Safety Assessment of a HLW Repository in Korea using MASCOT-K (MASCOT-K를 이용한 가상 방사성폐기물 처분장에서의 종합성능 평가)

  • 황용수;이연명;강철형
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.553-558
    • /
    • 2000
  • Since 1977, KAERI has conducted the fundamental R&D on the permanent disposal of potential HLW repository in Korea. The first ten year project is divided into three short-term phase studies. The first phase study which shall be finished in March of 2000, has the prime target to develop the disposal concept of HLW. Throughout this study the preliminary and generic disposal repository system has been introduced. The potential repository is proposed to be emplaced into crystalline rocks which is the most common rock types in Korea. The proposed depth of the repository is between 300 to 700 meter. The numerical code, MASCOT-K was developed to asserts the long term safety of the proposed repository concept. Based on this conceptual design preliminary safely assessment was performed. Results show that for the given disposal system the potential radioactive release it well below the regulatory limit.

  • PDF

Mathematical Modelling on THM Coupling in High-Level Radioactive Waste Repository (고준위 방사성폐기물 처분장에서의 THM 상호반응의 수학적 모델 개발)

  • 황용수;김진웅;강철형
    • Tunnel and Underground Space
    • /
    • v.8 no.1
    • /
    • pp.26-36
    • /
    • 1998
  • To assess the groundwater flow near high-level radioactive waste repositories, it is important to understand the effect of coupling among thermal, hydraulic, and mechanical effects. In this paper, detailed mathematical approach to model the groundwater flow near the waste form surrounded by buffer, influenced by decay heat of radioactive waste along with stress change is developed. Two cases(1) before the full expansion of buffer and (2) after the full expansion of buffer are modelled. Based on the mathematical models in this paper, detailed numerical study shall be pursued later.

  • PDF

원자 연료 물질의 안전 수송 - 일본의 현황과 법 체계, 국제 동향 및 과제 -

  • 한국원자력산업회의
    • Nuclear industry
    • /
    • v.23 no.2 s.240
    • /
    • pp.53-77
    • /
    • 2003
  • 일본은 현재 52기의 원자력발전소가 가동중에 있으며 3기가 건설중에 있다. 또한 원자 연료 사이클에 있어 요구되는 우라늄 농축, 방사성 폐기물의 매설 처분, 고준위 유리화 고화체 폐기물의 저장 및 관리, 재처리에 따른 각종 시설이 운영 또는 건설중에 있다. 이와 같이 원자력 이용의 발전에 따라 방사성 물질의 수송은 앞으로 더욱 활성화되고, 원자연료 사이클을 착실하게 추진하기 위해서도 방사성 물질의 안전 수송 확립은 필수적이어야 한다. 본 내용은 원자 연료 물질의 수송에 대하여, 수송을 어떻게 안전하게 수행하고 있는가, 그리고 안전성 확립과 합리화를 위한 문제점은 무엇인가에 대해 소개하고 있다.

  • PDF

미임계 핵변환로 최적 냉각재 선정

  • 한석중;김도형;유동한;신운철;박원석
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.690-695
    • /
    • 1998
  • 원자력시설에서 배출되는 고준위 방사선 페기물이나 TRU 둥의 심지층처분의 보완책으로서 핵변환 (Transmutation) 처리방안이 연구되고 있다 이 핵변환시스템의 냉각재로서 액체금속류가 고려되고 있다. 본 연구에서는 핵변환로에 적합한 냉각물질을 도출하기 위해서 보다 합리적인 선정방법으로서 의사결정방법을 이용하여 중점비교 대상인 나트륨(Na), 나트륨-칼륨 합금(Na-K alloy), 납(Pb), 납-비스므스 합금(Pb-Bi alloy)에 대한 정량적 평가를 시도하였다. 아울러 이 냉각재 후보물질에 대한 냉각재로서의 적합성 여부를 비교 검토하였다. 본 방법을 이용한 결과 핵 변화로의 냉각재로서는 납-비스므스 합금이 가장 적합한 것으로 평가되었다.

  • PDF

Analyses of the Double-Layered Repository Concepts for Spent Nuclear Fuels (사용후핵연료 심지층 처분장 복층개념 분석)

  • Lee, Jongyoul;Kim, Hyeona;Lee, Minsoo;Choi, Heui-Joo;Kim, Kyungsu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.151-159
    • /
    • 2017
  • A deep geological disposal at a depth of 500 m in stable host rock is considered to be the safest method with current technologies for disposal of spent fuels classified as high-level radioactive waste. The most important requirement is that the temperature of the bentonite buffer, which is a component of the engineered barrier, should not exceed $100^{\circ}C$. In Korea, the amount of spent fuel generated by nuclear power generation, which accounts for about 30% of the total electricity, is continuously increasing and accumulating. Accordingly, the area required to dispose of it is also increasing. In this study, various duplex disposal concepts were derived for the purpose of improving the disposal efficiency by reducing the disposal area. Based on these concepts, thermal analyses were carried out to confirm whether the critical disposal system requirements were met, and the thermal stability of the disposal system was evaluated by analyzing the results. The results showed that upward 75 m or downward 75 m apart from the reference disposal system location of 500 m depth would qualify for the double layered disposal concept. The results of this study can be applied to the establishment of spent fuel management policy and the design of practical commercial disposal system. Detailed analyses with data of a real disposal site are necessary.

A Complementary Analysis for the Structural Safety Evaluation of the Spent Nuclear Fuel Disposal Canister for the Canadian Deuterium and Uranium Reactor (중수로(CANDU)용 고준위폐기물 처분용기의 구조적 안전성 평가 보완 해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.381-390
    • /
    • 2009
  • In this paper, a complementary analysis for the structural safety evaluation of the spent nuclear fuel disposal canister developed for the Canadian Deuterium and Uranium(CANDU) reactor for about 10,000 years long term deposition at a 500m deep granitic bedrock repository has been performed. However this developed structural model of the spent nuclear fuel disposal canister which has 33 spent nuclear fuel baskets and whose diameter is 122cm is too heavy to handle without any structural safety problem. Hence a lighter structural model of the spent nuclear fuel disposal canister which is easy to handle has been required to develop very much. There are two methods to reduce the weight of the CANDU canister model. The one is to alleviate severe design conditions such as external loads and safety factor. The other is to optimize the cross section shape of the canister by reducing the spent nuclear fuel basket number. Hence, in this paper a complementary analysis to alleviate such severe design conditions is carried out and simultaneously structural analyses to optimize the cross section shape of the canister by reducing the spent nuclear fuel basket number below 33 are carried out by varying the external load and the canister diameter for the reduction of the canister weight. The complementary analysis results show that the diameter of canister can be shortened below 122cm to reduce the weight of the spent nuclear fuel disposal canister.

THM Coupling Analysis for Decovalex-2015 Task B2 (Decovalex-2015 Task B2를 위한 THM 해석기법 개발 및 적용)

  • Kwon, Sangki;Lee, Changsoo;Park, Seung-Hun
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.556-567
    • /
    • 2015
  • The evaluation of THM coupling behavior in deep underground repository condition is essential for the long term safety and stability assessment of high-level radioactive waste repository. In order to develop reliable THM analysis techniques effectively, an international cooperation project, DECOVALEX, is carried out. In DECOVALEX-2015 Task B2, the in situ THM experiment planned to be conducted by JAEA was modeled by the research teams from the participating countries. In this study, a THM coupling technique combining TOUGH2 and FLAC was developed and applied to 1 dimensional THM modeling, in which rock, buffer, and heater are considered. The results were compared with those from other research teams.

Biosphere Modeling for Dose Assessment of HLW Repository: Development of ACBIO (고준위 방사성패기물 처분장 생태계 모델링을 위한 ACBIO개발)

  • Lee, Youn-Myoung;Hwang, Yong-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.2
    • /
    • pp.73-100
    • /
    • 2008
  • For the purpose of evaluating dose rate to individual due to long-term release of nuclides from the HLW repository, a biosphere assessment model and the implemented code, ACBIO, based on BIOMASS methodology have been developed by utilizing AMBER, a general compartment modeling tool. To show its practicability and usability as well as to see the sensitivity of compartment scheme or parametric variation to concentration and activity in compartments as well as annual flux between compartments at their peak values, some calculations are made and investigated: For each case when changing the structure of compartments and GBIs as well as varying selected input Kd values, all of which seem very important among others, dose rate per nuclide release rate is separately calculated and analyzed. From the maximum dose rates (Bq/y), flux-to-dose conversion factors (Sv/Bq) for each nuclide were derived, which are to be used for converting the nuclide release rate appearing from the geosphere through various GBIs to dose rate (Sv/y) for individual in critical group. It has been also observed that compartment scheme, identification of possible exposure group and GBIs could be all highly sensitive to the final consequences in biosphere modeling.

  • PDF

Sequential Bayesian Updating Module of Input Parameter Distributions for More Reliable Probabilistic Safety Assessment of HLW Radioactive Repository (고준위 방사성 폐기물 처분장 확률론적 안전성평가 신뢰도 제고를 위한 입력 파라미터 연속 베이지안 업데이팅 모듈 개발)

  • Lee, Youn-Myoung;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.179-194
    • /
    • 2020
  • A Bayesian approach was introduced to improve the belief of prior distributions of input parameters for the probabilistic safety assessment of radioactive waste repository. A GoldSim-based module was developed using the Markov chain Monte Carlo algorithm and implemented through GSTSPA (GoldSim Total System Performance Assessment), a GoldSim template for generic/site-specific safety assessment of the radioactive repository system. In this study, sequential Bayesian updating of prior distributions was comprehensively explained and used as a basis to conduct a reliable safety assessment of the repository. The prior distribution to three sequential posterior distributions for several selected parameters associated with nuclide transport in the fractured rock medium was updated with assumed likelihood functions. The process was demonstrated through a probabilistic safety assessment of the conceptual repository for illustrative purposes. Through this study, it was shown that insufficient observed data could enhance the belief of prior distributions for input parameter values commonly available, which are usually uncertain. This is particularly applicable for nuclide behavior in and around the repository system, which typically exhibited a long time span and wide modeling domain.

A Coupled Hydro-Mechanical Analysis of a Deep Geological Repository to Assess Importance of Mechanical Factors of Bentonite Buffer (심층 처분 시설의 수리 역학적 해석을 통한 벤토나이트 버퍼의 역학적 영향 인자 중요도 평가)

  • Jeon, Yoon-Soo;Lee, Seung-Rae;Kim, Min-Seop;Jeon, Jun-Seo;Kim, Min-Jun
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.439-455
    • /
    • 2019
  • A buffer is the major component of a high level radioactive waste repository. Due to their thermal conductivity and low permeability, bentonites have been considered as a key component of a buffer system in most countries. The deep geological condition generates ground water inflow and results in swelling pressure in the buffer and backfill. Investigation of swelling pressure of bentonite buffer is an important task for the safe disposal system. The swelling pressure that can be critical is affected by mechanical and hydro properties of the system. Therefore, in this study, a sensitivity analysis was conducted to examine the effect of hydro-mechanical (HM) behaviors in the MX-80 bentonite. Based on the results of the swelling pressure generation with HM model parameters, a coupled HM analysis of an unsaturated buffer and backfill in a deep geological repository was also carried out to investigate the major factor of the swelling pressure generation.