• Title/Summary/Keyword: 고주파 피로

Search Result 62, Processing Time 0.034 seconds

The Designe of Series Resonant High Frequency Induction Heating System for Vari Power (가변 출력 직렬공진 고주파 유도가열 시스템의 설계)

  • Lee, Jong-Ho;Park, Chan-Won
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1105-1107
    • /
    • 2001
  • 본 연구에서 제안한 가변 출력 직렬공진 고주파 유도가열시스템은 기존 공진회로 트랜스 1차에 여러 개의 탭 제작과 공진회로의 콘덴서를 직, 병렬로 연결하는 등의 간단한 설계방법으로 주파수와 출력을 가변 시켜 실험함으로서 유도가열 시스템 1대로 다양한 피 가열부품 등에 적용시킬 수 있음을 확인할 수 있었다.

  • PDF

Bandpass Filter Based Focus Measure for Extended Depth of Field (피사계심도 확장을 위한 대역통과 필터 기반 초점 정량화 기법)

  • Cha, Su-Ram;Kim, Jeong-Tae
    • Journal of Broadcast Engineering
    • /
    • v.16 no.5
    • /
    • pp.883-893
    • /
    • 2011
  • In this paper, we propose a novel focus measure that determines in-focus and out-of-focus region in an image. In addition, we achieved extended depth of field by blending the acquired image and Wiener filtered image using a decision map based on the designed focus measure. Since conventional focus measures are based on the amount of high frequency components in an acquired image, the measures may not be accurate if there exist high frequency components in out-of-focused region. To overcome the problem, we designed the novel focus measure based on effective band pass filtering. In simulations and experiments, the proposed method showed better performance than existing methods.

Probabilistic Evaluation of Fatigue Life in High Frequency Electric Resistance Welded Joint of the Pipe (고주파 전기저항용접부 강관에서의 피로수명의 확률론적 평가)

  • Seo, Young-Bum;Kim, Choong-Myeong;Kim, Chul-Su;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.400-405
    • /
    • 2004
  • In this study, the optimal welding condition of the input power was selected experimentally through the ERW simulator, which is equal to welding status of ERW part in pipe. This condition is the input power 250kW in the heat treatment of the $900^{\circ}C$ normalizing derived from the nondestructive technique and impact energy. In order to evaluate the variation of the fatigue life in the pipe, fatigue surface crack growth test of base and optimal welded metal were performed statistically. As stress intensity factor range (${\Delta}K_s$) increases, the fatigue crack propagation rate (da/aN) of the base metal is faster than that of the welded joint. The variation of the fatigue life in the ERW pipe was estimated statistically using Monte-Carlo simulation with the standard deviation of material constants (C and m) of the paris law in the specimen.

  • PDF

The Effect of Structure on Torsional Fatigue Strength of Surface Hardened Carbon Steel (표면 경화된 탄소강의 비틀림 피로강도에 미치는 조직의 경향)

  • Ko Jun Bin;Kim Woo Kang;Won Jong Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.130-136
    • /
    • 2005
  • Induction hardening increases hardness near the surface where it's most needed, and leaves the surface in compression which improves fatigue life. Although case depth and chemical composition are same, the structure of induction hardened shaft affects the fatigue strength and life because of austenization during hardening. Therefore torsional fatigue tests of specimens from various structures, which are obtained by nomalizing, spheriodized annealing and tempering after quenching, were conducted on induction hardened automotive drive shafts with various case depths and loads applied in order to evalute the relation between structure and fatigue strength.

A Study on the Mechanical Properties by High-Frequency Induction Hardening of SCM440 Steel (고주파 담금질에 의한 SCM440강의 기계적 특성에 관한 연구)

  • Ahn, Seok-Hwan;Nam, Ki-Woo;Kim, Tae-Il;Lee, Mun-Yong;Kim, Dong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.74-80
    • /
    • 2009
  • Surface hardening treatments, such as using the high-frequency induction hardening method, are widely used to increase the fatigue life and prevent the failure of materials by locally increasing the surface hardness. This method, in particular, brings an improvement in static strength by compressive residual surface stress due to the hardening. In this study, the mechanical properties of high-frequency induction hardened SCM440 steel were investigated. These results were also compared with those for base metal and a Q/T (tempering after quenching) treatment specimen. The test results showed that partially high-frequency induction hardened SCM440 steel specimens were more improved in static strength, surface hardness, fatigue limit, and anti-wear than the base metal and Q/T treatment specimens. In particular, the fatigue limit of the high-frequency induction hardened SCM440 steel increased by more than about 52% compared to that of base metal and by about 25% compared to that of the Q/T specimen.

Online Load Estimation Method of High Frequency Induction Heat System (고주파 유도가열 장치의 실시간 부하예측 기법에 관한 연구)

  • Park, Tae-Joon;Kim, Tae-Won;Lee, Seung-Hee;Lee, Jin-Hee;Han, Mu-Ho;Lee, Hwang-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.123-124
    • /
    • 2010
  • 본 논문은 고주파 유도가열 장치의 실시간 부하 예측 기법을 제안한다. 인버터 출력전압과 콘덴서 양단전압을 센싱하여 adaptive parameter estimation 기법을 이용하여 피가열체인 부하의 등가저항과 인덕턴스를 구한다. 제안된 방법을 이용하여 부하 발열량과 콘덴서 뱅크의 Q factor를 실시간 예측할 수 있다. 콘덴서 뱅크의 Q factor를 통해 부하 부담률을 알 수 있으므로 뱅크의 파손 등의 사고를 미연에 방지 할 수 있게 한다. 본 논문에서 제안한 알고리즘의 타당성을 시뮬레이션을 통해 확인하였고 모의실험장치에 적용하여 실험을 통해 검증하였다.

  • PDF

Comparison and Optimization of Parallel-Transmission RF Coil Elements for 3.0 T Body MRI (3.0 T MRI를 위한 병렬전송 고주파 코일 구조 비교와 최적화)

  • Oh, Chang-Hyun;Lee, Heung-K.;Ryu, Yeun-Chul;Hyun, Jung-Ho;Choi, Hyuk-Jin
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.55-60
    • /
    • 2007
  • In high field (> 3 T) MR imaging, the magnetic field inhomogeneity in the target object increases due to the nonuniform electro-magnetic characteristics of the relatively high RF frequency. Especially in the body imaging, the effect causes more serious problems resulting in locally high SAR(Specific Absorption Ratio). In this paper, we propose an optimized parallel-transmission RF coil and show the utility of the coil by FDTD simulations to overcome the unwanted effects. Three types of TX coil elements are tested to maximize the efficiency and their driving patterns(amplitude and phase) optimized to have adequate field homogeneity, proper SAR level, and sufficient field strength. For the proposed coil element of $25cm{\times}8cm$ loop structure with 12 channels for a 3.0 T body coil, the field non-uniformity of more than 70% without optimization was reduced to about 26 % after the optimization of driving patterns. The experimental as well as simulation results show that the proposed parallel driving scheme is clinically useful for (ultra) high field MRI.

Characteristics of Fatigue Crack Growth for Camshaft Material Applied to High Frequence Induction Treatment (고주파열처리를 적용한 캠 샤프트 소재의 피로균열진전 특성)

  • Lee, Hyun-Jun;Park, Sung-Ho;Park, Won-Jo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.46-52
    • /
    • 2009
  • Nowadays, many components in automobile, aircraft, offshore structure and industry require lightness and high strength. However, since developments of advanced materials have limitations, it mainly is applying to method of surface hardening. This study offered research about camshaft that is one among engine important component. The material used in this study is 0.53% carbon steel as structure material of camshaft, splineshaft, coupling, pulley, driveshaft et cetera. Camshaft is processed using mainly carbon steel, and receives wear and fatigue by special quality high speed of parts. Therefore, camshaft need surface hardening to improve camshaft's fatigue life and increase durability of engine. This study compare to residual stress and martensite microstructure created by high frequency induction treatment, and these results lead to the conclusion of fatigue crack growth characteristics.

Muscle Fatigue Analysis by Median Frequency and Wavelet Transform During Lumbar Extension Exercises (요추신전운동 시 중앙주파수와 웨이브렛 변환을 이용한 근피로도 분석)

  • 장근;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.377-382
    • /
    • 2004
  • In the present study, thirteen healthy volunteers performed lumbar extension exercises at 48$^{\circ}$/s, loaded by 40, 50, 60kg(about 44, 55, 66% of maximum voluntary contraction). During the whole period of exercises, electromyographic(EMG) signal was measured in the erector spinae muscle in order to determine muscle fatigue. Using the wavelet transform, EMG signal was separated by various frequency ranges in the time-frequency domain, and muscle fatigue was analyzed, comparing with the results based on the median frequency(MDF). MDF shifted toward the lower frequency ranges with the muscle fatigue, showing a single characteristic frequency. On the other hand, wavelet transform of EMG signals resulted in increased power amplitude in lower frequency ranges(0-125Hz), and decreased power amplitude in higher frequency ranges(375-468Hz). This study reveals that the muscle fatigue during dynamic movement is explained better by wavelet analysis.