• Title/Summary/Keyword: 고정벽 하중

Search Result 10, Processing Time 0.024 seconds

Analysis on the Factors Affecting the Results of Full Frontal Barrier Impact Test (고정벽 정면충돌시험 결과에 미치는 요인 분석)

  • Lim, Jaemoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.3
    • /
    • pp.5-9
    • /
    • 2016
  • The objective of this study was to find the factors affecting the results of full frontal barrier impact test for the NCAP (New Car Assessment Program). To find the factors, the frontal NCAP test results of the NHTSA (National Highway Traffic Safety Administration) were utilized. The three tested vehicle were same model year. It was observed the second peak value of barrier force affected the occupant injury risk. As the second peak value of the barrier force increases, the injury risk of the driver side occupant increases as well.

Experimental Study of Residual Earth Pressure Acting on the Retaining Wall under Repeating Load (반복하중에 의해 옹벽에 작용하는 잔류토압의 실험적 연구)

  • 전용백
    • Geotechnical Engineering
    • /
    • v.8 no.4
    • /
    • pp.51-66
    • /
    • 1992
  • As the scale of public works get recently larger and diversified. the construction of retain- ing walls is required for the effective use of land. In the design of the retaining wall, the reliability and fitness of the retaining wall itself are regarded prudently although there is a tendency to ignore the importance of backfill. In this study, the experiments under various conditions such as repetition-continuity-load, roller-press load, and working space of backfill, are carried out using a model retaining wall similar to the real system. The experimental roes tilts are interpreted theoretically, Using a computer program, the experimental results are analyzed and compared with other theoretical wonts.

  • PDF

Wave Deformation and Blocking Performance by a Porous Dual Semi-Cylindrical Structure (투과성 이중 반원통 구조물에 의한 파 차단성능)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.10-17
    • /
    • 2010
  • The interaction of oblique incident waves with a porous dual semi-cylindrical structure is investigated under the assumption of linear potential theory. The porous dual semi-cylindrical structure consists of two concentric bottom-mounted cylindrical structures that are porous in front half and transparent in back half. By changing porosity, gap, and wave characteristics(wave frequencies, incidence angle), the wave blocking performance as well as the wave loads and the wave run-up are obtained. As a convenient measure of overall wave blocking performance, the root mean square(R.M.S.) of the wave elevation in a sheltered region is used. It is found that the porous semi-cylindrical structure may significantly reduce the wave response in a sheltered region and the wave forces decrease largely compared to the impermeable structure. The dual structure is more effective in reducing the wave response in a sheltered region than the mono type in the region of high frequencies.

A Stability Analysis for Vehicle Impact in U-Channel Segmental Concrete Bridges (U-채널 세그멘탈 콘크리트 교량의 차량충돌에 대한 안전성 분석)

  • Choi, Dong-Ho;Na, Ho-Sung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.17-25
    • /
    • 2010
  • This paper studied on stability of the U-channel segmental concrete bridge under vehicle-impact loads. The U-channel bridge has advantages in that it reduces an additional dead load and the edge beams role as a barrier. But it has a dangerous factor which collapses the bridge structure when the edge beams are ruptured. Therefore, it is necessary to verify behaviors of the bridge system under vehicle-impact loads. Static and dynamic vehicle impact simulations were carried out on the basis of AASHTO LRFD design specifications. In case of the static analysis, equivalent static loads specified in the AASHTO codes are loaded on the edge beams and in case of the dynamic analysis, FEM vehicle models are modeled by applying the dynamic test specifications of AASHTO codes. As a result, it is shown that U-channel bridge system has sufficient safety against static and dynamic impact loads specified in the AASHTO LRFD design specifications.

Effects of Vertical Spacing and Length of Reinforcement on the Behaviors of Reinforced Subgrade with Rigid Wall (보강재 간격 및 길이가 강성벽 일체형 보강노반의 거동에 미치는 영향)

  • Kim, Dae-Sang;Park, Seong-Yong;Kim, Ki-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.27-35
    • /
    • 2012
  • Facings of mechanically stabilized earth retaining walls have function to fix the reinforcement and prevent backfill loss, but the walls are lack of structural rigidity capable of resisting applied loads. The reinforced subgrade with rigid wall was developed to have the structural functions under train loading. Though it has lots of advantages such as small deformation after construction, its negative side effects of economics and difficult construction were mainly mentioned and not practically used. To apply it for railroad subgrade, this study focus on the construction cost down and the enhancement of constructability without functional loss. To do so, the behaviors of reinforced subgrade with rigid wall were evaluated with the change of the vertical spacing and length of reinforcement. Small scale model tests (1/10 scale) and 3 m full scale tests were performed to evaluate deformation characteristics of reinforced subgrade under simulated train loading. Even though it uses short reinforcement, it showed small horizontal displacement of wall and plastic settlement of subgrade. Also, it was verified that not only 30 cm but also 40 cm of vertical spacing of reinforcement had good performance in serviceability aspects.

A Study on the Basic Investigation for the Fire Risk Assessment of Education Facilities (교육시설 화재위험성 평가를 위한 기초조사에 관한 연구)

  • Lee, Sung-Il;Ham, Eun-Gu
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.351-364
    • /
    • 2021
  • Purpose: Fire load analysis was conducted to secure basic data for evaluating fire risk of educational facilities. In order to calculate the fire load through a preliminary survey, basic data related to the fire load of school facilities were collected. Method: The basic data were the definition and types of fire loads, combustion heat data for the calculation of fire loads. The fire load was evaluated by multiplying the combustion heat by the weight of the combustibles in the compartment when calculating the fire load. Result: As for the fixed combustible materials of A-elementary school, the floor was mainly made of wood, in consideration of emotion and safety in the classroom, music room, and school office, and the rest of the compartments were made of stone. The ceiling and walls were made of gypsum board and concrete, so they were not combustible. The typical inflammable items in each room were desks, chairs, and lockers in the classroom, and the laboratory equipment box and experimental tool box were the main components in the science room, and books, bookshelves, and reading equipment occupied a large proportion in the library room. Conclusion: 'The fire loads of A-elementary' schools according to the combustibles loaded were in the order of library, computer room, English learning room, teacher's office, general classroom, science hall, and music room.

Unified Constitutive Model for RC Planar Members Under Cyclic Load (주기하중을 받는 철근 콘크리트 면부재에 대한 통합구성모델)

  • 김재요;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.239-248
    • /
    • 2002
  • A constitutive model unifying plasticity and crack damage mode)s was developed to address the cyclic behavior of reinforced concrete planar members. The stress of concrete in tension-compression was conceptually defined by the sum of the compressive stress developed by the strut-action of concrete and the tensile stresses developed by tensile cracking. The plasticity model with multiple failure criteria was used to describe the isotropic damage of compressive crushing affected by the anisotropic damage of tensile cracking. The concepts of the multiple fixed crack damage model and the plastic flow model of tensile cracking were used to describe the tensile stress-strain relationship of multi-directional cracks. This unified model can describe the behavioral characteristics of reinforced concrete in cyclic tension-compression conditions, i.e. multiple tensile crack orientations, progressively rotating crack damage, and compressive crushing of concrete. The proposed constitutive model was implemented to finite element analysis, and it was verified by comparison with existing experimental results from reinforced concrete shear panels and walls under cyclic load conditions.

A Study on the Flexural Strength Capacity of Wall Stud Assembly (경량형강 스터드 벽체의 휨강도에 관한 연구)

  • Kwon, Young Bong;Chung, Hyun Seok;Kim, Gap Deuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.109-116
    • /
    • 2003
  • An investigation on the structural behavior of cold-formed steel lipped C-section stud for interior walls or partitions was carried out. This experimental research was carried out to study the ultimate and service load capacity of stud assemblies that are subjected to lateral loads. Each test specimen consisted of three or four lipped C-section studs and two C-section tracks that restrained both ends. The major factors considered in this experiment were the perforation on the web, the connection of the bridge channel and the special clip. The effect of the plaster board and the ply wood, which were attached to the tension flange on the flexural strength, was also investigated. Thereafter, the test strength capacities were compared with the nominal strength, based on the AISI Specifications (1996).

A Behaviour Analysis on Clayey Ground and Steel Sheet Piles Subjected to Unsymmetrical Surcharges (편재하중을 받는 점토지반과 강널말뚝의 거동해석)

  • Lee, Moon Soo;Lee, Byoung Koo;Jeong, Jin Seob;Kim, Chan Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.977-988
    • /
    • 1994
  • In this paper, the comparisons between field measurments and numerical results ware performed for the settlements, lateral displacement in Jinwol interchange works on the Honam express way whose site was improved by sand drain for the constructions of over bridges, piers and abutments. The computer program was developed by coupling Biot's equation with Sekiguchi's elasto-viscoplastic model under plane strain conditions. Steel pipe piles for piers were replaced into the equivalent steel sheet pile wall. The characteristics of behavior for both the soil foundations and the sheet piles wall were investigated with the variation of axial force on the wall, rigidity of the wall, supported condition of sheet pile into hard strata and the location of anchored point.

  • PDF

방파제케슨에 사용하는 신형식 푸팅구조의 역학적 특성과 구조해석

  • 한국어항협회
    • 어항어장
    • /
    • s.2
    • /
    • pp.86-127
    • /
    • 1988
  • 버트리스 푸팅 케슨(Buttress footing caisson) 및 상형 푸팅 케슨의 역학특성을 해명하고 구조설계법을 검토할 목적으로 재하실험을 실시했다. 재하실험에는 배근의 제약등을 고려해서 실구조물의 1/4정도의 대형모형공시체를 사용해서 푸팅부를 중심으로 해석하기위해 푸팅에 선분포하중을 재하했다. 유한요소법에 따른 선형구조해석을 실시하여 변위, 단면력과 한계상황설계법에서의 산정식에서 얻어진 단면내력과를 비교하여 동설계법의 케슨구조물에 대한 적용성에 관하여 고찰했다. 이 보고로써 얻어진 주요한 결론은 아래와 같다. (1) 재하실험에 의하면 버트리스 푸팅공시체의 파괴형식은 버트리스부의 철근에 연한 부착할열파괴였다. 또 상형푸팅공시체에서는 푸팅부의 내면전단파괴였다. 양구조물을 설계할 때는 종래의 면외력만의 검토뿐아니라 면내력도 적절히 평가할 필요가 있다. (2) 양공시체 함께 푸팅 케슨본체와의 접합부 및 푸팅과 상자옆쪽의 벽과의 접합부에 변형이 일어나 종래의 판구조설계에서 가정하고 있는 판주변의 고정조건이 만족되지 않았다. 따라서 케슨구조물의 구조해석에서 구조전체계를 취급할 필요가 있고 부재단위에서는 단면력을 과대 또는 과소로 산정할 우려가 있다. (3) 철근강복시정도까지는 구조전체계를 모델화한 유한요소법에 의한 선형구조해석결과와 실험결과가 잘 일치했다. (4) 한계상태설계법에서의 굽음내력, 전단내력 및 구열폭의 산정식은 실험결과와 비교해서 어느쪽이나 안전측의 치를 부여했다.

  • PDF