• Title/Summary/Keyword: 고정링

Search Result 661, Processing Time 0.033 seconds

Evaluating Reverse Logistics Networks with Centralized Centers : Hybrid Genetic Algorithm Approach (집중형센터를 가진 역물류네트워크 평가 : 혼합형 유전알고리즘 접근법)

  • Yun, YoungSu
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.55-79
    • /
    • 2013
  • In this paper, we propose a hybrid genetic algorithm (HGA) approach to effectively solve the reverse logistics network with centralized centers (RLNCC). For the proposed HGA approach, genetic algorithm (GA) is used as a main algorithm. For implementing GA, a new bit-string representation scheme using 0 and 1 values is suggested, which can easily make initial population of GA. As genetic operators, the elitist strategy in enlarged sampling space developed by Gen and Chang (1997), a new two-point crossover operator, and a new random mutation operator are used for selection, crossover and mutation, respectively. For hybrid concept of GA, an iterative hill climbing method (IHCM) developed by Michalewicz (1994) is inserted into HGA search loop. The IHCM is one of local search techniques and precisely explores the space converged by GA search. The RLNCC is composed of collection centers, remanufacturing centers, redistribution centers, and secondary markets in reverse logistics networks. Of the centers and secondary markets, only one collection center, remanufacturing center, redistribution center, and secondary market should be opened in reverse logistics networks. Some assumptions are considered for effectively implementing the RLNCC The RLNCC is represented by a mixed integer programming (MIP) model using indexes, parameters and decision variables. The objective function of the MIP model is to minimize the total cost which is consisted of transportation cost, fixed cost, and handling cost. The transportation cost is obtained by transporting the returned products between each centers and secondary markets. The fixed cost is calculated by opening or closing decision at each center and secondary markets. That is, if there are three collection centers (the opening costs of collection center 1 2, and 3 are 10.5, 12.1, 8.9, respectively), and the collection center 1 is opened and the remainders are all closed, then the fixed cost is 10.5. The handling cost means the cost of treating the products returned from customers at each center and secondary markets which are opened at each RLNCC stage. The RLNCC is solved by the proposed HGA approach. In numerical experiment, the proposed HGA and a conventional competing approach is compared with each other using various measures of performance. For the conventional competing approach, the GA approach by Yun (2013) is used. The GA approach has not any local search technique such as the IHCM proposed the HGA approach. As measures of performance, CPU time, optimal solution, and optimal setting are used. Two types of the RLNCC with different numbers of customers, collection centers, remanufacturing centers, redistribution centers and secondary markets are presented for comparing the performances of the HGA and GA approaches. The MIP models using the two types of the RLNCC are programmed by Visual Basic Version 6.0, and the computer implementing environment is the IBM compatible PC with 3.06Ghz CPU speed and 1GB RAM on Windows XP. The parameters used in the HGA and GA approaches are that the total number of generations is 10,000, population size 20, crossover rate 0.5, mutation rate 0.1, and the search range for the IHCM is 2.0. Total 20 iterations are made for eliminating the randomness of the searches of the HGA and GA approaches. With performance comparisons, network representations by opening/closing decision, and convergence processes using two types of the RLNCCs, the experimental result shows that the HGA has significantly better performance in terms of the optimal solution than the GA, though the GA is slightly quicker than the HGA in terms of the CPU time. Finally, it has been proved that the proposed HGA approach is more efficient than conventional GA approach in two types of the RLNCC since the former has a GA search process as well as a local search process for additional search scheme, while the latter has a GA search process alone. For a future study, much more large-sized RLNCCs will be tested for robustness of our approach.

Accuracy of 5-axis precision milling for guided surgical template (가이드 수술용 템플릿을 위한 5축 정밀가공공정의 정확성에 관한 연구)

  • Park, Ji-Man;Yi, Tae-Kyoung;Jung, Je-Kyo;Kim, Yong;Park, Eun-Jin;Han, Chong-Hyun;Koak, Jai-Young;Kim, Seong-Kyun;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.294-300
    • /
    • 2010
  • Purpose: The template-guided implant surgery offers several advantages over the traditional approach. The purpose of this study was to evaluate the accuracy of coordinate synchronization procedure with 5-axis milling machine for surgical template fabrication by means of reverse engineering through universal CAD software. Materials and methods: The study was performed on ten edentulous models with imbedded gutta percha stoppings which were hidden under silicon gingival form. The platform for synchordination was formed on the bottom side of models and these casts were imaged in Cone beam CT. Vectors of stoppings were extracted and transferred to those of planned implant on virtual planning software. Depth of milling process was set to the level of one half of stoppings and the coordinate of the data was synchronized to the model image. Synchronization of milling coordinate was done by the conversion process for the platform for the synchordination located on the bottom of the model. The models were fixed on the synchordination plate of 5-axis milling machine and drilling was done as the planned vector and depth based on the synchronized data with twist drill of the same diameter as GP stopping. For the 3D rendering and image merging, the impression tray was set on the conbeam CT and pre- and post- CT acquiring was done with the model fixed on the impression body. The accuracy analysis was done with Solidworks (Dassault systems, Concord, USA) by measuring vector of stopping’s top and bottom centers of experimental model through merging and reverse engineering the planned and post-drilling CT image. Correlations among the parameters were tested by means of Pearson correlation coefficient and calculated with SPSS (release 14.0, SPSS Inc. Chicago, USA) ($\alpha$ = 0.05). Results: Due to the declination, GP remnant on upper half of stoppings was observed for every drilled bores. The deviation between planned image and drilled bore that was reverse engineered was 0.31 (0.15 - 0.42) mm at the entrance, 0.36 (0.24 - 0.51) mm at the apex, and angular deviation was 1.62 (0.54 - 2.27)$^{\circ}$. There was positive correlation between the deviation at the entrance and that at the apex (Pearson Correlation Coefficient = 0.904, P = .013). Conclusion: The coordinate synchronization 5-axis milling procedure has adequate accuracy for the production of the guided surgical template.

Ecological Characteristics and Changes of Quercus mongolica Community in Namsan (Mt.), Seoul (서울시 남산 신갈나무림 생태계 특성과 변화 연구)

  • Han, Bong-Ho;Park, Seok-Cheol;Kim, Jong-Yup;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.2
    • /
    • pp.41-63
    • /
    • 2022
  • The purpose of this study is to secure objective and precise data through ecosystem monitoring, to reveal ecological characteristics through comparison and analysis with past survey data, and to accumulate basic data for diagnosing the current situation and predicting changes in the ecosystem. The target site is the 'Quercus mongolica forest on the Buksa-myeon of Namsan', which was designated as an Ecological Landscape Conservation Area (ELCA) of Seoul in July 2006. The research contents are analysis of soil environment change (1986~2016), change of actual vegetation (1978~2016), and change of plant community structure (1994~2016). A total of 8 fixed surveys (400~1,200m2) were established in 1994 and 2000. Analysis items are importance value, species and population, and Shannon's species diversity. The soil environment of Namsan is acidic (pH 4.40 in 2016), which is expected to have a negative impact on tree growth and vegetation structure due to its low capacity for exchangeable cations. Quercus mongolica forest in Namsan is mainly distributed on the northern slopes. The actual vegetation area changed from 49.4% in 1978 → 80.7% in 1986 → 82.4% in 2000 → 88.3% in 2005 → 88.3% in 2009 → 70.3% in 2016. In 2016, the forest decreased by 18% compared to 2009. While there was increased growth of Quercus mongolica in the tree layer from 2009 to 2016, the overall decline in vegetation area was due to logging and fumigation management following the spread of oak wilt in 2012. As for the changes in the plant community structure, Quercus mongolica of the tree layer was damaged by oak wilt, and the potential vegetation that can form the next generation was ambiguous. In the subtree layer, the force of urbanization tree species such as Styrax japonicus, Sorbus alnifolia, and Acer palmatum. was maintained or increased. In the shrub layer, the number of trees and species increased significantly due to the open tree crown, and accordingly, the species diversity of Shannon for woody plants also increased. In Quercus mongolica forest of Namsan, various ecological changes are occurring due to the effects of urban environments such as air pollution and acid rain, the limitation of Quercus mongolica pure forest due to oak wilt, and the introduction of exotic species, thus, it is necessary to establish a management plan through continuous monitoring.

Analysis of Co- and Post-Seismic Displacement of the 2017 Pohang Earthquake in Youngilman Port and Surrounding Areas Using Sentinel-1 Time-Series SAR Interferometry (Sentinel-1 시계열 SAR 간섭기법을 활용한 영일만항과 주변 지역의 2017 포항 지진 동시성 및 지진 후 변위 분석)

  • Siung Lee;Taewook Kim;Hyangsun Han;Jin-Woo Kim;Yeong-Beom Jeon;Jong-Gun Kim;Seung Chul Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.19-31
    • /
    • 2024
  • Ports are vital social infrastructures that significantly influence both people's lives and a country's economy. In South Korea, the aging of port infrastructure combined with the increased frequency of various natural disasters underscores the necessity of displacement monitoring for safety management of the port. In this study, the time-series displacements of Yeongilman Port and surrounding areas in Pohang, South Korea, were measured by applying Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) to Sentinel-1 SAR images collected from the satellite's ascending (February 2017-July 2023) and descending (February 2017-December 2021) nodes, and the displacement associated with the 2017 Pohang earthquake in the port was analyzed. The southern (except the southernmost) and central parts of Yeongilman Port showed large displacements attributed to construction activities for about 10 months at the beginning of the observation period, and the coseismic displacement caused by the Pohang earthquake was up to 1.6 cm of the westward horizontal motion and 0.5 cm of subsidence. However, little coseismic displacement was observed in the southernmost part of the port, where reclamation was completed last, and in the northern part of the oldest port. This represents that the weaker the consolidation of the reclaimed soil in the port, the more vulnerable it is to earthquakes, and that if the soil is very weakly consolidated due to ongoing reclamation, it would not be significantly affected by earthquakes. Summer subsidence and winter uplift of about 1 cm have been repeatedly observed every year in the entire area of Yeongilman Port, which is attributed to volume changes in the reclaimed soil due to temperature changes. The ground of the 1st and 2nd General Industrial Complexes adjacent to Yeongilman Port subsided during the observation period, and the rate of subsidence was faster in the 1st Industrial Complex. The 1st Industrial Complex was observed to have a westward horizontal displacement of 3 mm and a subsidence of 6 mm as the coseismic displacement of the Pohang earthquake, while the 2nd Industrial Complex was analyzed to have been little affected by the earthquake. The results of this study allowed us to identify the time-series displacement characteristics of Yeongilman Port and understand the impact of earthquakes on the stability of a port built by coastal reclamation.

Sentinel-1 SAR image-based waterbody detection technique for estimating the water storage in agricultural reservoirs (농업저수지의 저수량 추정을 위한 Sentinel-1 SAR 영상 기반 수체탐지 기법)

  • Jeong, Jaehwan;Oh, Seungcheol;Lee, Seulchan;Kim, Jinyoung;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.535-544
    • /
    • 2021
  • Agricultural water occupies 48% of water demand, and management of agricultural reservoirs is essential for water resources management within agricultural basins. For more efficient use of agricultural water, monitoring the distribution of water resources in agricultural reservoirs and agricultural basins is required. Therefore, in this study, three threshold determination methods (i.e., fixed threshold, Otsu threshold, Kittler-Illingworth (KI) threshold) were compared to detect terrestrial water bodies using Sentinel-1 images for 3 years from 2018 to 2020. The purpose of this study was to evaluate methods for determining threshold values to more accurately estimate the reservoir area. In addition, by analyzing the relationship between the water surface and water storage at the Edong, Gosam, and Giheung reservoirs, water storage based on the SAR image was estimated and validated with observations. The thresholding method for detecting a waterbody was found to be the most accurate in the case of the KI threshold, and the water storage estimated by the KI threshold indicated a very high agreement (r = 0.9235, KGE' = 0.8691). Although the seasonal error characteristics were not observed, the problem of underestimation at high water levels may occur; the relationship between the water surface and the water storage could change rapidly. Therefore, it is necessary to understand the relationship between the water surface area and water storage through ground observation data for a more accurate estimation of water storage. If the use of SAR data through water resources satellites becomes possible in the future, based on the results of this study, it is judged that it will be beneficial for monitoring water storage and managing drought.

A Study on Termite Monitoring Method Using Magnetic Sensors and IoT(Internet of Things) (자력센서와 IoT(사물인터넷)를 활용한 흰개미 모니터링 방법 연구)

  • Go, Hyeongsun;Choe, Byunghak
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.1
    • /
    • pp.206-219
    • /
    • 2021
  • The warming of the climate is increasing the damage caused by termites to wooden buildings, cultural properties and houses. A group removal system can be installed around the building to detect and remove termite damage; however, if the site is not visited regularly, every one to two months, you cannot observe whether termites have spread within, and it is difficult to take prompt effective action. In addition, since the system is installed and operated in an exposed state for a long period of time, it may be ineffective or damaged, resulting in a loss of function. Furthermore if the system is installed near a cultural site, it may affect the aesthetic environment of the site. In this study, we created a detection system that uses wood, cellulose, magnets, and magnetic sensors to determine whether termites have entered the area. The data was then transferred to a low power LoRa Network which displayed the results without the necessity of visiting the site. The wood was made in the shape of a pile, and holes were made from the top to the bottom to make it easier for termites to enter and produce a cellulose sample. The cellulose sample was made in a cylindrical shape with a magnet wrapped in cellulose and inserted into the top of a hole in the wood. Then, the upper part of the wood pile was covered with a stopper to prevent foreign matter from entering. It also served to block external factors such as light and rainfall, and to create an environment where termites could add cellulose samples. When the cellulose was added by the termites, a space was created around the magnet, causing the magnet to either fall or tilt. The magnetic sensor inside the stopper was fixed on the top of the cellulose sample and measured the change in the distance between the magnet and the sensor according to the movement of the magnet. In outdoor experiments, 11 cellulose samples were inserted into the wood detection system and the termite inflow was confirmed through the movement of the magnet without visiting the site within 5 to 17 days. When making further improvements to the function and operation of the system it in the future, it is possible to confirm that termites have invaded without visiting the site. Then it is also possible to reduce damage and fruiting due to product exposure, and which would improve the condition and appearance of cultural properties.

A Research on the Special Characteristics of the Changes of the Vegetations in the World Cup Park Landfill Slope District (월드컵공원 사면지구 식생현황 및 변화 특성 연구)

  • Han, Bong-Ho;Park, Seok-Cheol;Choi, Han-Byeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.4
    • /
    • pp.1-15
    • /
    • 2023
  • This research intended to reveal the special characteristics of the vegetation structure and the tendency of change of -landfill slope districts, which are reclaimed land, through an investigationsinto the presently existent vegetation and plant community structure of the World Cup Park landfill slope district. For the analysis of changes in vegetation, this study compared the results of field surveys in 1999, 2003, 2005, 2007, 2008, 2012, 2016, and 2021. For the investigation into the plant community structure, a field investigation was carried out in 2021 with six fixed investigation districts designated in 1999 as subjects. To analyze the change in the plant community structure, the past data on the population, the number of the species, and the species diversity by the layer in 2021 were compared and analyzed in the landfill slope district, which is reclaimed land. The changes of the vegetation distribution and the power had been affected by typhoons (Kompasu). Above the plantation foundation, which had been dry and poor, Salix koreensis, marsh woody plants that had formed the community, decreased greatly. The Robinia pseudoacacia community, after the typhoon in 2010, decreased in the number of species and population. Afterward, it showed a tendency to rebound. Regarding the Ailanthus altissima-Robinia pseudoacacia-Paulownia tomentosa community, the number of the species and the population had shown a change similar to the Robinia pseudoacacia community. The Paulownia tomentosa and the Ailanthus altissima have been culled. The slope was predicted as a Future Robinia pseudoacacia forest. The Salix pseudolasiogyne community has been transitioning to a Robinia pseudoacacia forest. Only some enumeration districts, the Robinia pseudoacacia forests and the Salix pseudolasiogyne, had been growing. However, most had been in been declining. It was predicted that this community will be maintained as a Robinia pseudoacacia forest in the future. As these vegetation communities are the representative vegetation of the landfill slope districts, which is reclaimed land, there is a need to understand the ecosystem changes of the community through continuous monitoring. The results of this research can be utilized as a basic material for the vegetation restoration of reclaimed land.

K-DEV: A Borehole Deviation Logging Probe Applicable to Steel-cased Holes (철재 케이싱이 설치된 시추공에서도 적용가능한 공곡검층기 K-DEV)

  • Yoonho, Song;Yeonguk, Jo;Seungdo, Kim;Tae Jong, Lee;Myungsun, Kim;In-Hwa, Park;Heuisoon, Lee
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.167-176
    • /
    • 2022
  • We designed a borehole deviation survey tool applicable for steel-cased holes, K-DEV, and developed a prototype for a depth of 500 m aiming to development of own equipment required to secure deep subsurface characterization technologies. K-DEV is equipped with sensors that provide digital output with verified high performance; moreover, it is also compatible with logging winch systems used in Korea. The K-DEV prototype has a nonmagnetic stainless steel housing with an outer diameter of 48.3 mm, which has been tested in the laboratory for water resistance up to 20 MPa and for durability by running into a 1-km deep borehole. We confirmed the operational stability and data repeatability of the prototype by constantly logging up and down to the depth of 600 m. A high-precision micro-electro-mechanical system (MEMS) gyroscope was used for the K-DEV prototype as the gyro sensor, which is crucial for azimuth determination in cased holes. Additionally, we devised an accurate trajectory survey algorithm by employing Unscented Kalman filtering and data fusion for optimization. The borehole test with K-DEV and a commercial logging tool produced sufficiently similar results. Furthermore, the issue of error accumulation due to drift over time of the MEMS gyro was successfully overcome by compensating with stationary measurements for the same attitude at the wellhead before and after logging, as demonstrated by the nearly identical result to the open hole. We believe that the methodology of K-DEV development and operational stability, as well as the data reliability of the prototype, were confirmed through these test applications.

Comparison of Soil Physicochemical Properties According to the Sensitivity of Forest Soil to Acidification in the Republic of Korea (우리나라 산림토양의 산성화 민감도평가와 그에 따른 토양 이화학적 특성 비교분석)

  • Lee, Ah Lim;Koo, Namin
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.2
    • /
    • pp.157-168
    • /
    • 2020
  • The sensitivity of forest soil to acidification in the Republic of Korea (ROK) was evaluated based on pHH2O, cation exchange capacity (CEC), and base saturation (BS). Sensitivity to acidification was categorized into three grades: adequate level (AL, pH ≧ 4.2, CEC ≧ 15cmol/kg, BS ≧ 15%), caution level (CL, at least one indicator is below AL), and severe Level (SL, all three indicators are below AL). Soil samples were collected from the 65 stationary monitoring plots (40 × 40 ㎢), distributed throughout ROK. Only 19% of soil samples were classified as AL, while 66% and 15% were CL and SL, respectively. The median of pHH2O, CEC, BS, and Ca/Al indicator in AL soils was pH 4.64, 20.7cmol/kg, 29%, and 6.3, respectively. Moreover, BCex (K+, Mg2+, Ca2+) and available phosphorus (AP) concentration compared with a threshold value and molar ratio of BCex and AP to total nitrogen (TN) was high. This indicates that AL soils have a good nutrient condition. The molar Ca/Al ratio, an indicator for toxicity of exchangeable aluminum (Alex), was more than 1, indicating no negative impact of Alex on plant growth. On the contrary, the median of pHH2O, CEC, and BS in SL soils was pH 4.02, 13.2cmol/kg, and 10%, respectively. The Ca/Al index was less than 0.6, which indicates that negative impacts of Alex on plants were high. Furthermore, both the concentration of BCex in SL soils and the BCex/TN ratio were the lowest among the three acidity degrees. This shows that SLsoils can be degraded by soil acidification compared with less acidic soils.

Water Quality Improvement of Stagnant Water using an Upflow Activated Carbon Biofilm Process and Microbial Community Analysis (상향류 활성탄 생물막 공정을 이용한 정체 수역 수질 개선 및 공정 내 미생물 군집 해석)

  • Oh, Yu-Mi;Lee, Jae-Ho;Park, Jeung-Jin;Choi, Gi-Choong;Park, Tae-Joo;Lee, Tae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.23-32
    • /
    • 2010
  • The capacity of natural purification was limited by the interruption of natural flow and the problems such as eutrophication were occurred by nutritive salts accumulation in stagnant stream. Moreover, the inflow of non-point sources causes non-degradable materials to increase in stagnant stream. In this study, an upflow biological activated carbon (BAC) biofilm process comprised of anoxic, aerobic 1, and aerobic 2 reactors were introduced for treatment of stagnant stream and SS, $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, TN, and TP were monitored in the upflow BAC biofilm reactors with continuous cycling. In order to simulate stagnant stream, the lake water of amusement park and golf course were stored as influent in a tank of $2m^3$ and hydraulic retention time (HRT) was changed into 6, 4, and 2 hours. At HRT 4hr and the lake water of amusement park as influent, the removal efficiencies of SS, $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, TN, and TP showed the best water quality improvement and were 69.8, 83.0, 91.3, 74.1, 74.7, and 88.9%, respectively. At HRT 4hr and the lake water of golf course as influent, the removal efficiencies of SS, $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, TN and TP were 78.5, 78.0, 80.2, 74.9, 55.6 and 97.5%, respectively. As the results of polymerase chain reaction - denaturing gel gradient electrophoresis (PCR-DGGE), microbial community was different depending on influent type. Fluorescence in situ hybridization (FISH) showed that nitrifying bacteria was dominant at HRT 4 hr. The biomass amount and microbial activities by INT-DHA test were not decrease even at lower HRT condition. In this study, the upflow BAC biofilm process would be considered to the water quality improvement of stagnant stream.