• Title/Summary/Keyword: 고장 모델

Search Result 657, Processing Time 0.023 seconds

A Study on the Optimal Replacement Periods of Digital Control Computer's Components of Wolsung Nuclear Power Plant Unit 1 (월성 원자력 발전소 1호기의 디지탈 제어컴퓨터 부품들의 최적교체주기에 관한연구)

  • Mok, Jin-Il;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.430-436
    • /
    • 1993
  • Due to the failure of the instrument and control devices of nuclear power plants caused by aging, nuclear power plants occasionally trip. Even a trip of a single nuclear power plant (NPP) causes an extravagant economical loss and deteriorates public acceptance of nuclear power plants. Therefore, the replacement of the instrument and control devices with proper consideration of the aging effect is necessary in order to prevent the inadvertent trip. In this paper we investigated the optimal replacement periods of the control computer's components of Wolsung nuclear power plant Unit 1. We first derived mathematical models for optimal replacement periods to the digital control computer's components of Wolsung NPP Unit 1 and calculated the optimal replacement periods analytically. We compared the periods with the replacement periods currently used at Wolsung NPP Unit 1. The periods used at Wolsung is not based on mathematical analysis, but on empirical knowledge. As a consequence, the optimal replacement periods analytically obtained and those used in the field show a little difference.

  • PDF

Ductile Fracture Predictions of High Strength Steel (EH36) using Linear and Non-Linear Damage Evolution Models (선형 및 비선형 손상 발전 모델을 이용한 고장력강(EH36)의 연성 파단 예측)

  • Park, Sung-Ju;Park, Byoungjae;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.288-298
    • /
    • 2017
  • A study of the damage evolution laws for ductile materials was carried out to predict the ductile fracture behavior of a marine structural steel (EH36). We conducted proportional and non-proportional stress tests in the experiments. The existing 3-D fracture strain surface was newly calibrated using two fracture parameters: the average stress triaxiality and average normalized load angle taken from the proportional tests. Linear and non-linear damage evolution models were taken into account in this study. A damage exponent of 3.0 for the non-linear damage model was determined based on a simple optimization technique, for which proportional and non-proportional stress tests were simultaneously used. We verified the validity of the three fracture models: the newly calibrated fracture strain model, linear damage evolution model, and non-linear damage evolution model for the tensile tests of the asymmetric notch specimens. Because the stress evolution pattern for the verification tests remained at mode I in terms of the linear elastic fracture mechanics, the three models did not show significant differences in their fracture initiation predictions.

A FPGA Implementation of BIST Design for the Batch Testing (일괄검사를 위한 BIST 설계의 FPGA 구현)

  • Rhee, Kang-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1900-1906
    • /
    • 1997
  • In this paper, the efficient BILBO(named EBILBO) is designed for BIST that is able to batch the testing when circuit is designed on FPGA. The proposed algorithm of batch testing is able to test the normal operation speed with one-pin-count that can control all part of large and complex circuit. PRTPG is used for the test pattern and MISR is used for PSA. The proposed algorithm of batch testing is VHDL coding on behavioral description, so it is easily modified the model of test pattern generation, signature analysis and compression. The EBILBO's area and the performance of designed BIST are evaluated with ISCAS89 benchmark circuit on FPGA. In circuit with above 600 cells, it is shown that area is reduced below 30%, test pattern is flexibly generated about 500K and the fault coverage is from 88.3% to 100%. EBILBO for the proposed batch testing BIST is able to execute concurrently normal and test mode operation in real time to the number of $s+n+(2^s/2^p-1)$ clock(where, in CUT, # of PI;n, # of register, p is order # of polynomial). The proposed algorithm coded with VHDL is made of library, then it well be widely applied to DFT that satisfy the design and test field on sme time.

  • PDF

On the Current Limiting Characteristics and Parameters of Superconducting Fault Current Limiter Introduced to 345kV Electric Power System due to Resistive-Type, Reactive-Type and Their Performance Comparison (유도형과 저항형 초전도한류기의 파라메타를 고려한 전력계통도입효과의 분석 및 성능평가에 관한 연구)

  • 홍원표;김용학
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.74-83
    • /
    • 2002
  • The maximun short circuit current of modern power system is becoming so large that circuit breaker is not expected to be able to shut down the current in the future In order cut over-currents, a system composed of a superconducting fault current limiter(SFCL) and traditional breaker seems to provide a promising solution for furture power operation. In present paper, three line-to-ground fault is assumed to happen at the center of 345kV transmission lines in a large capacity electric power system. The superconducting fault current limiter was represented using a commutation type, which consists of a non-inductive superconducting coil and current limiting element (resistor or reactor). from the viewpoint of current limiting performance, the prevention of the voltage drop at the load bus and comparision characteristics for two type SFCL. Desired design specification and operation parameters of SECL were also given qualitatively by the performance.

A Study on the Diagonosis and Prediction System of Vehicle Faults Using Condition Based Maintenance Technique (상태기반 유지보수 기법을 적용한 차량고장 진단 및 예측 시스템 연구)

  • Song, Gil jong;Lim, Jae Jung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.80-95
    • /
    • 2019
  • Recently, with the development of sensor and communication technology, researchers at home and abroad have actively conducted research on methodologies for determining maintenance through diagnosis and prediction techniques by collecting information on the status of equipment or systems. Based on the status of vehicle parts at this point in time, this study presented a system framework for making maintenance decisions by predicting the change in vehicle part status to a future date based on the current state of vehicle parts. In addition, condition diagnosis and predictive data adjustment was configured through tracking the status of vehicle parts before and after maintenance activities. We hope that the application of the results of this study will contribute a little to the safety of citizens using public buses and to the activation of the condition-based maintenance system of vehicles.

Study of Aging and Performance About Separation Devices Has Been Stored (장기 보관된 분리장치의 성능 및 노화에 관한 연구)

  • Kim, Dong-seong;Jin, Hong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.565-572
    • /
    • 2021
  • In this study, a study on the performance and aging of explosive bolts stored for a long time among pyrotechnic mechanical devices(PMD) used as separation devices in the defense field is conducted. For this, explosive bolts that had been installed in the weapon system for about 10 years are secured. Performance and life extension test procedures are established based on the AIAA Standard and MIL-STD. Before performance evaluation, non-functional tests are performed to check whether external changes or failures occurred. Next, circuit inspection and X-ray tests are conducted to check the failure in internal circuits and structures. After that, performance test is carried out to confirm the operation of the samples that passed the non-functional test. Through this test, separation of bolt and separation time are measured, and some samples are tested after a high temperature storage test to confirm the remaining life and the possibility of extension. Finally, the remaining life and reliability are predicted based on the results of the test and the Arrhenius model to identify remaining shelf life and reliability depend on time.

A study on User Experience of Scooter-sharing System -Focused on Kickgoing and Lime- (전동킥보드 공유 서비스의 사용자 경험에 관한 고찰 -킥고잉과 라임을 중심으로-)

  • Lee, Ung-Yeol;Kim, Seung-In
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.425-431
    • /
    • 2021
  • The purpose of this study is to compare and analyze leading brands of the scooter-sharing system market of Korea, KICKGOING and Lime, in terms of user experience, and to suggest the improvement direction of the applications and scooters of those two services. The assessment was conducted in such a way that the experimental group using scooter-sharing system over a certain frequency would choose the specific service they use most frequently, and complete a questionnaire: based on the reorganized version of the Peter Morville's Honeycomb Model. Based on the results of the experiment, We drew a conclusion that the services need to add navigation features in the application, to provide more simple procedures for reporting breakdown or accident and browsing insurance information, and to improve the user and pedestrian safety levels by gamification, et cetera. We expect this study to help the fast-growing smart mobility market and scooter-sharing systems that represent the market develop into a user-centered way.

Analysis of Human Casualties on the Ground in Urban Area due to UAM Crash (UAM 추락 시 인구 밀접 지역 지상 인명피해 분석)

  • Kim, Youn-sil;Choi, In-ho
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.281-288
    • /
    • 2022
  • This study quantitatively analyzed the human casualties that can occur when a multicopter-type Urban Air Mobility (UAM) with a weight of about 1 ton and a speed of about 100 km/h falls in an urban area. Based on the population density and building database in Seoul, the population exposed to collisions in the event of a UAM crash was derived. Through the ballistic descent model, the accident impact radius of the UAM fall was calculated. In addition, the change in human casualties on the ground was analyzed when the accident impact radius increased. Finally, the ground risk map was created for Seoul, and it was confirmed that about 1 to 10 people could be injured when a UAM crash.

An Optimization Model for O&M Planning of Floating Offshore Wind Farm using Mixed Integer Linear Programming

  • Sang, Min-Gyu;Lee, Nam-Kyoung;Shin, Yong-Hyuk;Lee, Chulung;Oh, Young-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.255-264
    • /
    • 2021
  • In this paper, we propose operations and maintenance (O&M) planning approach for floating offshore wind farm using the mathematical optimization. To be specific, we present a MILP (Mixed Integer Linear Programming that suggests the composition of vessels, technicians, and maintenance works on a weekly basis. We reflect accessibility to wind turbines based on weather data and loss of power generation using the Jensen wake model to identify downtime cost that vary from time to time. This paper also includes a description of two-stage approach for maintenance planning & detailed scheduling and numeric analysis of the number of vessels and technicians on the O&M cost. Finally, the MILP model could be utilized in order to establish the suitable and effective maintenance planning reflecting domestic situation.

Vibration Anomaly Detection of One-Class Classification using Multi-Column AutoEncoder

  • Sang-Min, Kim;Jung-Mo, Sohn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.9-17
    • /
    • 2023
  • In this paper, we propose a one-class vibration anomaly detection system for bearing defect diagnosis. In order to reduce the economic and time loss caused by bearing failure, an accurate defect diagnosis system is essential, and deep learning-based defect diagnosis systems are widely studied to solve the problem. However, it is difficult to obtain abnormal data in the actual data collection environment for deep learning learning, which causes data bias. Therefore, a one-class classification method using only normal data is used. As a general method, the characteristics of vibration data are extracted by learning the compression and restoration process through AutoEncoder. Anomaly detection is performed by learning a one-class classifier with the extracted features. However, this method cannot efficiently extract the characteristics of the vibration data because it does not consider the frequency characteristics of the vibration data. To solve this problem, we propose an AutoEncoder model that considers the frequency characteristics of vibration data. As for classification performance, accuracy 0.910, precision 1.0, recall 0.820, and f1-score 0.901 were obtained. The network design considering the vibration characteristics confirmed better performance than existing methods.