본 논문에서는 TDX-10 데이터베이스 데이터의 고장을 주기적으로 진단하고 복구할 수 있는 고장진단 전문가 시스팀을 제안하고 구현하였다. 실시간 환경 및 분산구조를 갖는 데이터베이스 관리 시스팀에서 데이터베이스의 효과적인 접근을 위해서 필요한 데이터베이스의 데이터 즉, 디렉토리와 딕셔너리는 매우 중요하며 고장이 발생할 경우 데이터베이스 관리시스팀에 미치는 영향은 치명적이다. 따라서, 실시간 환경을 갖는 데이터베이스 관리 시스팀에서 데이터베이스 데이터에 대한 고장 진단 및 복구는 필수적이라고 할 수 있다. 본 논문에서 제안한 고장진단 전문가 시스팀은 데이터베이스 데이터를 운용중 변하는 부분과 변하지 않는 부분으로 분류하고 미리 주어진 고장진단 규칙에 따라 진단하는 방법이다. 데이터베이스 데이터의 고장진단 데이터, 고장진단 규칙, 고장진단 데이터 생성기, 고장진단 데이터 검증기, 그리고 고장진단기로 구성되어 있다. 고장진단 데이터는 고장진단기가 데이터베이스 데이터를 주기적으로 진단하기 위하여 사용하는 마스터 데이터로서 두개가 존재한다. 고장진단 데이터 생성기는 데이터베이스 데이터의 고장진단을 위한 데이터 구조를 생성하고 데이터베이스로부터 데이터베이스를 데이터를 중복하여 읽어들이는 역할을 한다. 이와 같은 과정은 시스팀이 초기에 동작을 시작하거나 운용중 운용자에 의해서 릴레이션의 추가 및 삭제, 그리고 튜플의 추가등과 같은 사건이 발생할 경우에 이루어진다. 데이터베이스 검증기는 고장진단 데이터 생성기가 중복하여 생성한 데이터에 대해서 데이터베이스 데이터의 제작시의 초기 오류를 검증해냄으로써 데이터베이스 관리 시스팀의 안전한 운용을 가능하게 하며 고장진단기가 데이터베이스 데이터를 주기적으로 진단할 데이터를 탄생시킨다. 마지막으로 고장진단기는 주기적으로 데이터베이스 데이터의 고장을 진단하여 고장이 발생한 데이터를 미리 분류한 규칙에 따라 원래의 데이터로 복구하거나 운용자에게 보고함으로써 고장에 대비하도록 한다. 그리고 데이터베이스 상의 운용자에 의한 변경을 감지하여 고장진단 데이터의 재생성을 지시한다. 본 논문에서 제시하고 구현한 데이터베이스 데이터의 고장진단 및 복구를 위한 전문가 시스팀은 실시간 환경과 고장허용 환경, 분산 구조 그리고 빈번한 접근을 갖는 데이터베이스 관리 시스팀에서 아주 중요한 역할을 할 수 있다.
Proceedings of the Korean Reliability Society Conference
/
2000.11a
/
pp.353-362
/
2000
다양한 컴포넌트들로 구성된 시스템의 수명 데이터는 시스템 컴포넌트들의 신뢰성을 추정하는데 많이 사용된다. 하지만 비용이나 고장진단의 기술적 문제 때문에 시스템 고장의 정확한 원인을 밝혀내기는 어렵다. 시스템이나 컴포넌트의 수명 데이터 중 정확한 고장원인을 알 수 없는 데이터를 마스크 데이터라 한다. 본 연구는 마스크데이터와 베이지안 추정의 연구방향을 살펴보고, 그리고 고장률의 비정보 사전분포를 이용하여, 컴포넌트가 직렬로 구성된 시스템의 수명 데이터가 마스크 데이터를 갖는 지수분포의 시스템 컴포넌트 고장률을 추정한다.
Proceedings of the Safety Management and Science Conference
/
2000.11a
/
pp.53-62
/
2000
다양한 컴포넌트들로 구성된 시스템의 수명 데이터는 시스템 컴포넌트들의 신뢰성을 추정하는데 많이 사용된다. 하지만 비용이나 고장진단의 기술적 문제 때문에 시스템 고장의 정확한 원인을 밝혀내기는 어렵다. 시스템이나 컴포넌트의 수명 데이터 중 정확한 고장원인을 알 수 없는 데이터를 마스크 데이터라 한다. 본 연구는 마스크데이터와 베이지안 추정의 연구방향을 살펴보고, 그리고 고장률의 비정보 사전분포를 이용하여, 컴포넌트가 직렬로 구성된 시스템의 수명 데이터가 마스크 데이터를 갖는 지수분포의 시스템 컴포넌트 고장률을 추정 한다.
Journal of the Korean Data and Information Science Society
/
v.22
no.4
/
pp.755-764
/
2011
In many companies field failure data is used to predict the future number of failures, especially when an unexpected failure mode happens to be a problem. It is because they want to predict the number of spare parts needed and the future quality warranty cost associated with the part based on the predictions of the future number of failures. In this paper field summary data is used to predict the future number of failures based on an appropriate distribution. Other types of data are also investigated to identify the appropriate distribution.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.12a
/
pp.463-467
/
2002
In this paper, we construct the fault detection and diagnosis system based on fuzzy algorithm in the injection molding machine. Data of operating injection molding machine are acquired in database in order to raise the reliability of detection and diagnosis.
Kwon Jung-Min;Lee Hong-Hee;Yi Myung-Jae;Nguyen Ngoc Tu
Proceedings of the KIPE Conference
/
2006.06a
/
pp.305-307
/
2006
기존에 사용되어 온 진동데이터를 이용한 유도전동기 고장진단 기법은 유도전동기의 전기적 결함을 파악하기 어렵고 특정 고장의 경우 유사한 진동주파수를 포함하고 있어 정확한 고장진단이 어렵다. 본 논문에서는 유도전동기 고장진단 시스템을 구현하기 위해 기존의 진동데이터 분석에 전류 분석기법 중의 하나인 MCSA(Motor Current Signature Analysis)기법을 추가하여 유도전동기 예지보전시스템의 신뢰성을 향상시켰다. 구현된 시스템의 신뢰성을 검증하기 위해 유도전동기의 고장진단을 위한 실험환경을 구축하고 진동데이터만을 이용하여 얻어진 고장진단 결과와 전류데이터 분석을 병행하여 얻어진 고장진단 결과를 비교 분석하였다.
인터넷의 대중화와 함께 데이터 통신서비스에 대한 수요로 데이터 통신망은 그 양과 종류가 급격하게 증가하고 있어서 통신망 운용에 따른 망구성 및 고장처리 체계의 정립이 필요하게 되었다. 더더구나 앞서가는 통신업자들은 사이버상에서도 양질의 고객응대 서비스를 제공하려고 노력하고 있다. 현재 통신망연구소에서 개발중인 데이터 통신망 통합 고장처리시스템은 한국통신에서 제공하고 있는 데이터망들에 대한 고장신고를 접수하고, 고장에 대한 시험 및 수리를 수행하며, 그 결과를 고객에게 통보하는 전과정에 관련된 기술을 포함하고 있다. 본 논문에서는 데이터 통신망에 대한 고장시험, 가입자정보관리, 망상태관리에 관련된 시스템들과의 체계적인 연동을 통한 통합고장처리 방안, 시스템 개발 구조 등을 기술한다.
KIPS Transactions on Software and Data Engineering
/
v.4
no.1
/
pp.9-18
/
2015
Software Reliability Growth Models (SRGMs) are useful for determining the software release date or additional testing efforts by using software failure data. It is not appropriate for a SRGM to apply to all software. And besides a large number of SRGMs have already been proposed to estimate software reliability measures. Therefore selection of an optimal SRGM for use in a particular case has been an important issue. The existing methods for selecting a SRGM use the entire collected failure data. However, initial failure data may not affect the future failure occurrence and, in some cases, it results in the distorted result when evaluating the future failure. In this paper, we suggest a method for selecting a SRGM based on the evaluation goodness-of-fit using partial data. Our approach uses partial data except for inordinately unstable failure data in the entire failure data. We will find a portion of data used to select a SRGM through the comparison between the entire failure data and the partial failure data excluded the initial failure data with respect to the predictive ability of future failures. To justify our approach this paper shows that the predictive ability of future failures using partial data is more accurate than using the entire failure data with the real collected failure data.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2023.05a
/
pp.275-276
/
2023
산업 현장의 기계 시설물 고장 문제는 큰 인명피해와 경제적 손실을 초래할 수 있기 때문에, 기계 시설물의 상태를 기반하여 고장을 진단하는 것은 대단히 중요하다. 따라서, 본 연구에서는 전류 센서 데이터를 활용하여, 시설물의 고장 여부를 진단할 수 있는 알고리즘을 제안한다. 본 연구에 활용된 전류 센서 데이터는 x, y, z축을 가진 3상 전류 데이터로 구성되어 있으며, 2kHz로 1초간 샘플링 되어 있다. 본 연구에서는 2차원적 특성을 가지는 전류 센서 데이터를 분석하기 위해 CNN(Convolution Neural Network)을 활용한다. 시설물의 고장진단에 가장 적합한 모델을 선정하기 위해 CNN의 대표적인 백본 네트워크를 활용하여, 결과를 비교하였다. 실험 결과, 본 연구에서 구성한 후보 백본 네트워크 중 ResNet의 분류 정확도가 98.5%로 가장 높게 나타났다.
Proceedings of the Korean Nuclear Society Conference
/
1998.05a
/
pp.252-257
/
1998
국내 원전에 신뢰도 기반 정비(RCM : Reliability Centered Maintenance) 기법을 도입하기 위해 수행하고 있는 영광 1,2호기 시법계통 RCM 분석에서 관련 기기의 고장데이터를 RCM 분석 방법론에 따라 분석하였다. 본 논문에서는 작업의뢰서와 작업보고서 기록내용을 토대로 지배적인 고장모드 및 다빈도 고장발생 기기를 파악하여 고장원인을 분석하였으며, 기기 유형으로 분류하여 고장들을 분석하였다. 분석결과 지배적인 고장모드는 EPRI에서 분류한 고장모드에 모두 포함되었으며, 고장빈도가 높은 기기의 고장원인은 운전환경, 사용유체, 운전형태, 기기 형식 등에 따라 고장메커니즘이 다르게 나타나는 것으로 분석되었다. 기기 유형으로 분류하여 고장모드별로 고장율을 분석한 결과 미국의 Generic Data(IEEE Std 500-1984)와 근소한 차이를 보이거나 약간 낮은 것으로 분석되었으며, 고장율이 높은 기기 유형을 단위 기기별로 세분화하여 분석한 결과 공기구동 조절벨브의 외부누설 고장율은 1.10E-06 이지만 충전유량 조절밸브의 고장율은 1.70E-05로서 약 10배 정도로 고장율이 높은 것으로 분석되었다. 기기별로 세분화한 고장을 분석 결과는 시범계통 RCM 분석시 고장모드 영향분석(FMEA. Failure Mode and Effective Analysis) 단계에서 필수기기를 선정하는 하나의 인자로 활용하였으며, 고장율의 역수로 구한 고장간 평균시간(MTBF:Mean Time Between Failure)은 정비주기 선정시 기초데이터로 활용된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.