선형 시불변 시스템에서 고유치와 고유벡터는 시스템의 응답 특성을 결정하는 중요한 요소이다. 즉 선형 시불변 시스템의 응답은 고유치의 실수부가 음수이면 안정하게 되며, 입력이 가해질 때 상태변수는 고유벡터의 조합으로 주어진다. 따라서 고유치와 고유벡터의 성질을 잘 이용하면 선형시스템의 응답을 보다 깊이 있게 파악할 수 있을 뿐 아니라 복잡하게 커플링이 되어 있는 시스템을 간략하게 표현할 수 있게 한다. 또한 선형시스템에서 관측 불가능한 모드, 제어 불가능한 모드가 어떤 것인지 구체적으로 파악할 수 있게 해 준다.
본 논문에서는 조명의 변화에 의해 컬러 영상의 컬러 성분이 달라지더라도 영상 내 컬러간의 편차값을 나타내는 공분산 행렬(covariance matrix)의 고유벡터(eigenvector)와 영상 내 화소들의 컬러 성분과의 상관관계는 거의 변화하지 않는 특징을 이용한 조명 변화에 강인한 영상 검색 방법을 제안한다. 제안된 방법은 영상에서 컬러 성분들의 공분산 행렬과 공분산 행렬의 고유치(eigenvalue), 고유벡터를 계산한 후, 가장 큰 고유치에 관계된 고유벡터로 화소를 투영시키고, 투영된 벡터의 크기 성분으로 영상을 재구성한다. 재구성된 영상으로부터 7개의 불변 모멘트(moment)를 계산하고, 공분산의 가장 큰 고유치를 가중치로 부과하여 특징벡터를 추출한다. 7개의 불변 모멘트로부터 구한 특징벡터는 영상 내 물체의 이동, 영상의 회전, 크기 변화뿐만 아니라, 조명의 변화에 의해 컬러가 변화할 경우에도 유사한 영상을 잘 검색한다. 제안된 방법의 성능 확인을 위하여 5가지 조명에서 얻은 영상 데이터베이스를 이용하여 실험하였으며, 실험 결과 히스토그램 인터섹션에 비해 적은 특징량으로 검색이 가능하면서 조명 변화에도 대응할 수 있는 검색 결과를 얻을 수 있었다.
Journal of the Computational Structural Engineering Institute of Korea
/
v.12
no.1
/
pp.95-102
/
1999
본 연구에서는 중복되지 않는 고유치를 갖는 비비례 감쇠계의 고유치와 고유벡터의 민감도를 계산하는 새로운 방법을 제시하였다. 제안 방법에서는 (n+1)차의 대칭 행렬로 이루어진 대수방정식을 해석함으로써 n개의 자유도를 갖는 감쇠계의 고유치와 고유벡터의 설계변수에 대한 미분을 구한다. 제안 방법은 매우 간단하면서도 수치적 안정성이 보장되고 정확한 해를 주는 방법이다. 제안 방법의 검증을 위해 7자유도를 갖는 차량모델의 민감도해석을 예제에서 다루고 있다. 예제에서의 설계변수는 콘테이너의 질량으로 하였다.
Journal of the Computational Structural Engineering Institute of Korea
/
v.12
no.1
/
pp.103-109
/
1999
본 연구에서는 중복 고유치를 갖는 비비례 감쇠 진동계의 고유치와 고유벡터의 민감도를 계산하는 새로운 방법을 제시하였다. 제안 방법은 매우 간단하면서도 수치적 안정성이 보장되고 정확한 해를 주는 방법이다. 제안 방법에서는 (n+m)차의 대칭 행렬로 이루어진 대수방정식을 해석함으로써 n개의 자유도를 갖는 감쇠계에 있어서 m차의 중복도를 갖는 고유치와 고유벡터의 설계변수에 대한 미분을 구한다. 제안 방법의 검증을 위해 5자유도를 갖는 단순구조물의 민감도해석을 예제에서 다루고 있다. 예제에서의 설계변수는 모델의 부분강성으로 하였다.
고유치는 여러 공학문제에서 중요하다. 예를들어 비행기의 안전성은 어떤 행렬(matrix)의 고유 치에 의해서 결정된다. 보의 고유진동수는 실제로 행렬의 고유치이다. 좌굴(buckling) 해석도 행렬의 고유치를 구하는 문제이다. 고유치는 여러 수학적인 문제의 해석에서도 자연히 발생한다. 상수계수 일계연립상미분방정식의 해는 그 계수행렬의 고유치로 구할 수 있다. 또한 행렬의 제곱의 수렬 $A,{\;}A^{2},{\;}A^{3},{\;}{\cdots}$의 거동은 A의 고유치로서 가장 쉽게 해석할 수 있다. 이러한 수렬은 연립일차방정식(비선형)의 반복해에서 발생한다. 따라서 이 강좌에서는 행렬의 고유치를 수치적으로 구하는 문제에 대하여 고찰 하고자 한다. 실 또는 보소수 .lambda.가 행렬 B의 고유치라 함은 영이 아닌 벡터 y가 존재하여 $By={\lambda}y$ 가 성립할 때이다. 여기서 벡터 y를 고유치 ${\lambda}$에 속하는 B의 고유벡터라 한다. 윗식은 또 $(B-{\lambda}I)y=0$의 형으로도 써 줄 수 있다. 행렬의 고유치를 수치적으로 구하는 방법에는 여러 가지 방법이 있으나 그 중에서 효과있는 Danilevskii 방법을 소개 하고자 한다. 이 Danilevskii 방법에 의하여 특 성다항식(Characteristic polynomial)을 얻을 수 있고 이 다항식의 근을 얻는 방법 중에 Bairstow 방법 (또는 Hitchcock 방법)이 있는데 이에 대하여 아울러 고찰하고자 한다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.28
no.10C
/
pp.949-957
/
2003
This paper presents a gradient ON-OFF algorithm of which the performance is very robust even when the angle spread increases in the mobile communication environments. The proposed method getting the diversity gain by utilizing the primary and secondary eigenvector, which corresponds to the largest and the second largest eigenvalue of the autocovariance matrix of the received signal vector, outperforms the method which just utilizes one eigenvector. By applying the proposed method to IS-2000 1X signal environments, it is observed that the proposed method shows excellent performance compared to a typical beamforming method using just one eigenvector, which considerably degrades the receiving performance as the angle spread increases.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.03a
/
pp.165-168
/
1998
얼굴을 인식하는 연구 분야는 얼굴 영상을 분석하는 과정을 거친다. 또한, 얼굴 영상 분석은 얼굴 영상을 이용하는 모든 분야의 연구에 필요한 전처리 과정이라고 할 수 있다. 그러나 얼굴 영상을 분석하는 일은 많은 비용이 든다. 본 연구에서는 이러한 분석과정을 거치지 않고 얼굴 영상을 변형한다. 입력되어지는 얼굴 영상에 나타나는 얼굴 표정을 파악하기 위하여 입력되는 데이터의 변화를 가장 잘 표현해 주는 것으로 널리 알려져 있는 고유 벡터를 이용하며, 기존의 영상을 변형한새로운 영상을 생성하기 위해서 가장 직관적으로 사용할 수 있지만, 광류 영상을 구하는 과정이 시간적으로 많은 비용을 요구하기 때문에, 본 연구에서는 일반 영상에 대한 고유 벡터와 광류 영상에 대한 교유 벡터를 이용하여 고유 벡터 공간 상의 가중치 벡터를 전달하는 방법으로 영상을 처리할 때마다 수행하여야 하는 광류 계산과정을 제거하였다.
The localization of sources has a numerous number of applications. To estimate the position of sources, the relative delay between two or more received signals for the direct signal must be determined. Although the generalized cross-correlation method is the most popular technique, an approach based on eigenvalue decomposition (EVD) is also popular one, which utilizes an eigenvector of the minimum eigenvalue. The performance of the eigenvalue decomposition (EVD) based method degrades in the low SNR and the correlated environments, because it is difficult to select a single eigenvector for the minimum eigenvalue. In this paper, we propose a new adaptive algorithm based on Canonical Correlation Analysis (CCA) in order to extend the operation range to the lower SNR and the correlation environments. The proposed algorithm uses the eigenvector corresponding to the maximum eigenvalue in the generalized eigenvalue decomposition (GEVD). The estimated eigenvector contains all the information that we need for time delay estimation. We have performed simulations with uncorrelated and correlated noise for several SNRs, showing that the CCA based algorithm can estimate the time delays more accurately than the adaptive EVD algorithm.
In this paper, we discuss students' conceptual development of eigen value and eigen vector in differential equation course based on reformed differential equation using the mathematical model of mass spring according to historico-generic principle. Moreover, in setting of small group interactive learning, we investigate the students' development of mathematical attitude.
A method used for measuring the stiffness of hinging reinforced concrete frame structures is developed. The so called Stiffness Measure Method is used to evaluate the tangent stiffness of hinge regions while the structure is responding in nonlinear ranges. Eigenvector methods for nonlinear response have not been especially popular because of the need for regenerating eigenvectors as the time history proceeds. In the present work the eigenvectors sets and corresponding nonlinear state variables, i. e., the tangent stiffnesses of the hinge regions, are stored. There is an expectation that previously generated eigenvectors can be reused as the analysis proceeds. The stiffness measure is used to compare the current tangent stiffnesses of hinge regions with those of previously stored eigenvectors sets. Since eigenvector calculations are diminished the method is effective in reducing computational effort for reinforced concrete frame structures subjected to strong ground motions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.